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1 Introduction

The decision to migrate is one of the most important economic decisions an individual

can make. Many factors influence this decision, from employment prospects and amenity

differentials to life-cycle considerations and migration costs. In each of these factors, social

networks play a prominent role. It is through social networks that migrants learn about

opportunities and conditions in potential destinations; at home, the structure of migrants’

social networks shapes their ability and desire to leave.

This paper provides new insight into how social networks influence an individual’s deci-

sion to migrate. Here, prior work emphasizes two distinct mechanisms: first, that networks

provide migrants with access to information, for instance about jobs and conditions in the

destination (Borjas, 1992, Topa, 2001, Munshi, 2003, Dustmann et al., 2016); and second,

that networks act as a safety net for migrants by providing material or social support (Car-

rington, Detragiache and Vishwanath, 1996, Edin, Fredriksson and Åslund, 2003, Dolfin and

Genicot, 2010, Munshi, 2014, Comola and Mendola, 2015). However, there is considerable

ambiguity about the nature and relative importance of these two mechanisms. For instance,

the prevailing view in the migration literature is that migrants tend to go to places where

they have larger networks, but a handful of studies argue that larger networks may actually

deter migration, for instance if migrants compete with one another over opportunities and

resources.1 Similarly, robust risk sharing networks can both facilitate migration by providing

informal insurance against negative outcomes (Morten, 2019), and discourage migration if

migrants fear those left behind will be sanctioned for their departure (Munshi and Rosen-

zweig, 2016, Banerjee and Newman, 1998).

These ambiguities arise in part because it is difficult to link social network structure

to migration decisions using traditional data (Chuang and Schechter, 2015). Instead, most

existing work relies on indirect proxies for a migrant’s social network, such as the assumption

that individuals from the same hometown, or with similar observable characteristics, are more

likely to be connected than two dissimilar individuals.2 Such proxies provide a reasonable

1Classic papers documenting the ‘prevailing’ view include Rees (1966), Greenwood (1969), Granovetter
(1973), Montgomery (1991), and Borjas, Bronars and Trejo (1992). More recent examples include Mun-
shi (2003), Winters, de Janvry and Sadoulet (2001), Dolfin and Genicot (2010), Patel and Vella (2012),
Fafchamps and Shilpi (2013), Mahajan and Yang (2017), Giulietti, Wahba and Zenou (2018), Bertoli and
Ruyssen (2018). Papers that highlight the potential deterrent effect of larger networks include Calvó-
Armengol (2004), Calvó-Armengol and Jackson (2004), Wahba and Zenou (2005) and Beaman (2012).

2For instance, Munshi (2003) uses rainfall shocks at origin to instrument for network size at destination.
Beaman (2012) exploits exogenous variation in the size of the migrant’s social network induced by the
quasi-random assignment of political refugees to new communities. Kinnan, Wang and Wang (2018) take
advantage of a resettlement program in China that sent 18 million urban youth to rural areas. Related

2



approximation of the size of a migrant’s social network, but do not reveal how more nuanced

network structures influence the migration decision. Higher-order network structure plays

a critical role in decisions about employment, education, health, finance, product adoption,

and the formation of strategic alliances.3 Yet, the role of such network structure in migration

has not been systematically studied.

We leverage a rich new source of ‘digital trace’ data to provide a detailed empirical

perspective on how social networks influence the decision to migrate. These data capture

the entire universe of mobile phone activity in Rwanda over a five-year period. Each of

roughly one million individuals is uniquely identified throughout the dataset, and every

time they make or receive a phone call, we observe their approximate location, as well as

the identity of the person they are talking to. From these data, we can reconstruct each

subscriber’s 5-year migration trajectory, as well as a detailed picture of their social network

before and after migration.

The empirical analysis links each individual’s migration decisions over time to the evolving

structure of their social network. For instance, we use these data to confirm the longstanding

hypothesis that people move to places where they know more people; conversely, individuals

are less likely to leave places where they have larger networks. While these results are

expected, an advantage of our setting is that we can observe exactly how migration likelihood

varies with network size. The relationship is monotonic and approximately linear, such that

the probability of migration roughly doubles as the number of contacts in the destination

doubles. Superficially, this result diverges from a series of studies that predict eventual

negative externalities from network size, as when members compete for information and

opportunities (Calvó-Armengol, 2004, Calvó-Armengol and Jackson, 2004, Beaman, 2012,

Dagnelie, Mayda and Maystadt, 2019).

We then focus on developing a systematic understanding of how higher-order network

structure — i.e., the connections of the migrant’s connections (and their connections’ con-

nections, and so forth) — influences the decision to migrate. The purpose of this analysis

is to understand whether, ceteris paribus, individuals are more likely to migrate to places

approaches are used by Card (2001), Hanson and Woodruff (2003) and Dinkelman and Mariotti (2016).
3For example: Granovetter (1973), Burt (1992), and Karlan et al. (2009) provide examples of how higher-

order network structure affects employment prospects. Banerjee et al. (2013), Beaman et al. (2015), and
Ugander et al. (2012) illustrate the importance of higher-order structure in the adoption of microfinance,
new plant seeds, and Facebook, respectively. Ambrus, Mobius and Szeidl (2015) and Chandrasekhar, Kinnan
and Larreguy (2018) relate network structure to contract enforcement and informal insurance. Keeling and
Eames (2005) review how network structure influences the spread of infectious diseases. König et al. (2017)
and Jackson and Nei (2015) link political network structure to strategic alliance formation. See Jackson
(2010) and Easley and Kleinberg (2010) for an overview.
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where their social networks have particular network topologies. A stylized version of our

approach is shown in Figure 1: we are interested in understanding whether, for instance,

individual A is more likely to migrate than individual B, where both A and B know exactly

two people in the destination and three people at home, and the only observable difference

between A and B is that B’s contacts are connected to each other whereas A’s contacts are

from two disjoint communities.

Our ability to identify the effect of social networks on migration is complicated by the

fact that network structure is not exogenous. We address this concern in three principal

ways. First, as noted, we focus on the relationship between the higher-order structure

of a migrant’s social network and subsequent migration decision. While a migrant may

easily influence their direct connections, we assume they have less ability to influence the

exact manner in which their connections are connected to one another. Second, we relate

migration decisions in each month to the higher-order structure of the network several months

prior. This is meant to minimize the likelihood that the decision to migrate shaped the

social network, rather than vice versa.4 Finally, we use an extremely restrictive set of fixed

effects to eliminate many likely sources of omitted variable bias. Our preferred specification

includes fixed effects for each individual migrant (to control for individual heterogeneity, for

instance that certain people are both more likely to migrate and to have certain types of

networks), fixed effects for each possible origin-destination-month combination (to control

for factors that are shared by all people facing the same migration decision, such as wage

and amenity differentials), and fixed effects for each possible destination network size (such

that comparisons are always between places where the migrant has the exact same number of

direct contacts, as in Figure 1). Thus, in our preferred specification, the identifying variation

comes from within-individual differences in network structure between destinations and over

different months in the 5-year window, net the population-average differences that vary by

home-destination-month, and net any effects that are common to all people with exactly the

same number of friends in the destination. We would observe such variation if, for instance,

an individual had been considering a move to a particular destination for several months, but

only decided to migrate after his friends in the destination became friends with each other

— and if that tightening of his social network exceeded the average tightening of networks

in that destination (as might occur around the holidays, for instance).

4Our main specifications relate migration decisions to network structure 2 months prior, but results are
unchanged if we use lags between 2 and 6 months. We also find qualitatively similar results when we adopt
a “shift-share” approach that relates migration decisions to prior changes in higher-order network structure,
holding fixed the direct connections of the migrant.
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This analysis helps establish a new set of stylized facts about the relationship between

migration and social networks. Most notably, we show that migrants are more likely to

migrate to destinations where their social networks are interconnected (i.e., where the mi-

grant’s friends are friends with each other), but that they are no more likely to migrate to

destinations where their networks are extensive (i.e., where their distance-2 and distance-3

neighborhoods are larger). In fact, conditional on network size migrants are less likely to

go to places where their networks are extensive — a result that surprised us initially, given

the emphasis prior work has placed on the value of connections to socially distant nodes

in a network (e.g., Granovetter, 1973). In other words, of the three potential migrants in

Figure 1, B is most likely to migrate and C is least likely, with A somewhere in between.

To better understand this ‘surprising’ result, we document considerable heterogeneity in

the migration response to social network structure. In particular, we find that the negative

effect of extensive networks is driven by settings where a migrant’s direct contacts have

a large number of “strong ties” in the destination (where tie strength is defined by the

frequency of communication); when a migrant’s destination contacts have many weak ties,

migration is not deterred. Such evidence suggests that there may be rivalry in information

sharing in networks, which leads migrants to value connections to people for whom there is

less competition for attention (as in Dunbar, 1998, Banerjee et al., 2012). We also find that

while the average migrant is not drawn to locations where her friends have more friends (as

in G3), such structure does attract several less common types of migrants. In particular,

repeat migrants (who have previously migrated from their home to the destination), long-

term migrants, and short-distance migrants — all of whom are presumably better informed

about the structure of the destination network — are more likely to migrate to locations

where their networks are more extensive.

To summarize, this paper makes two main contributions. First, it provides a new empir-

ical perspective on the determinants of migration in developing countries (cf. Lucas, 2015).

In this literature, many scholars have noted the important role that social networks play

in facilitating migration. Early examples in the economics literature include Rees (1966)

and Greenwood (1969); a large number of subsequent studies document the empirical rela-

tionship between network size and migration rates.5 More recently, Munshi and Rosenzweig

5Examples include Montgomery (1991), Borjas, Bronars and Trejo (1992), Munshi (2003), McKenzie and
Rapoport (2010), Dolfin and Genicot (2010), Beaman (2012), Patel and Vella (2012), Bertoli, Fernández-
Huertas Moraga and Ortega (2013), Bertoli and Ruyssen (2018). Two recent papers use phone data to link
spatial mobility and social networks. Büchel et al. (2020) use data from a Swiss cellphone operator to link
migration decisions to phone calls, and document a similar relationship between network size and migration
as the one we note in Section 4.1. Barwick et al. (2019) show that migrant flows in a Chinese city correlate
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(2016) document that the fear of losing social network ties may prevent profitable migra-

tion, while Morten (2019) shows that the act of migration can change social relationships

and risk sharing. Kinnan (2019) theorizes about the two-way inter-connections: migration

of one individual can make other network members better off if that individual has a new

source of income, but others may be worse off if the act of migration improves the outside

opportunity for that person or makes it easier to hide income. This paper builds on this

line of work by exploiting a new source of data to establish a more nuanced set of stylized

facts about networks and migration — highlighting, in particular, the value migrants place

on interconnected networks, and substantial heterogeneity in how different types of migrants

value networks.

Second, through the study of migration, we shed light on the more general question

of how social networks provide social capital to individuals embedded in those networks

(cf. Jackson, 2010, Banerjee et al., 2013, 2019).6 We contrast interconnected and extensive

networks, just as network theory distinguishes between networks that provide cooperation

capital and networks that provide information capital (Jackson, 2020). In that literature, co-

operation capital is usually motivated by repeated game models of network interaction, where

interconnected networks (e.g., cliques) best support social reinforcement and sanctioning.7

Information capital, which reflects the network’s ability to efficiently transmit information,

is associated with extensive subnetworks (e.g., stars and trees) where an individual is linked

to many others via short network paths.8 We show that, at least to migrants, topologies

associated with cooperation capital matter most.

2 Data and Measurement

To study the empirical relationship between networks and migration, we exploit a novel

source of data that contains detailed information on the migration histories and evolving

social networks of roughly one million individuals in Rwanda. These data capture all mobile

with call volume between regions, and link this information flow to improved labor market outcomes. Both
papers focus primarily on how on network size relates to migration, whereas our focus is on the role of
higher-order network structure, conditional on network size.

6There is a large literature on social capital that studies how social structure fosters trust and cooperation
in a society. In particular, the importance of social pressures on fostering cooperation has deep roots in the
sociology literature (cf. seminal work by Simmel (1950) and Coleman (1988), among many others).

7Jackson, Rodriguez-Barraquer and Tan (2012) and Ali and Miller (2016) provide recent examples. See
also Ligon and Schechter (2011), Jackson, Rodriguez-Barraquer and Tan (2012), Ambrus, Mobius and Szeidl
(2015) and Chandrasekhar, Kinnan and Larreguy (2018).

8Early models include Kermack and McKendrick (1927) and Jackson and Wolinsky (1996); more recent
examples include Calvó-Armengol and Jackson (2004), Jackson and Yariv (2010), and Banerjee et al. (2013).
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phone activity that occurred in Rwanda from January 2005 until June 2009. These Call

Detail Records (CDR) were obtained from Rwanda’s near-monopoly telecommunications

company, and contain metadata on every phone call mediated by the mobile phone network.

In total, we observe roughly one billion mobile phone calls between roughly one million

unique subscribers.

To provide intuition, the network of a single migrant, in the month before migration, is

shown in Figure 2. This particular migrant (the green dot) had 20 unique contacts in the

month prior to migration, 7 of whom were in his home district (blue dots), four of whom were

in the destination district (red dots), and the remainder were in other districts (grey dots).

Friends of friends are depicted as hollow grey circles.9 This section describes how we use these

data to observe the structure of each individual’s social network over time (Section 2.1) and

to extract each individual’s complete migration history (Section 2.2). Section 2.3 discusses

limitations of these data.10

2.1 Modeling social network structure with mobile phone data

A central goal of network theory is to understand how the structure of a social network affects

the social capital that an agent obtains from that network. In Appendix A1, we develop a

model of how an individual’s social capital relates to the topology of the network, i.e., to the

configuration of connections between individuals. The model highlights two distinct types

of social capital, also emphasized in the migration literature, which influence the decision to

migrate: information capital and cooperation capital.

Information capital. We think of information capital as the potential for the social net-

work to provide access to novel information — about jobs, new opportunities, and the like.

Jackson (2020) describes this as the “ability to acquire valuable information and/or spread it

to other people through social connections” (p.4). The network’s ability to transmit informa-

tion is closely associated with specific network topologies. In particular, efficient information

gathering typically requires an extensive subnetwork such that one person is linked to many

others via short network paths (cf. Granovetter, 1973). For instance, Jackson and Wolinsky

(1996) provide an early measure of information capital as decay centrality, where each agent

9Throughout, we use the term ‘friend’ loosely, to refer to the contacts we observe in the mobile phone
network. These contacts may be friends, family, business relations, or something else.

10All personally identifying information is removed from the CDR prior to analysis. In addition, to focus
our analysis on individuals rather than businesses, and to remove the potential impact of spammers and call
centers, we remove all transactions involving numbers with more than 200 unique contacts in a single month
(this represents the 95th percentile).
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receives a value q < 1 (the probability of information transmission) from each direct friend,

a discounted value of q2 from each friend of friend, and so on. More recently, Banerjee et al.

(2013) introduce a notion of diffusion centrality, which accounts for the fact that multiple

paths could increase the chance that information makes it from one individual to other.

In both the decay and diffusion centrality measures, information capital increases with

more friends, friends of friends, friends of friends of friends, and so on. In subsequent

analysis, we study how migration decisions relate to the size of an individual’s second-degree

neighborhood (or unique friends of friends, not counting direct contacts of the individual)

and third-degree neighborhood (unique friends of friends of friends, excluding first- and

second-degree connections). Formally, let the network G be a matrix with Gij = 1 if i and

j are connected and otherwise Gij = 0 (including Gii = 0). A path between i and j is an

ordered sequence of agents (ii1i2...ihj) such that any two adjacent agents are connected. The

distance between i and j, denoted as d(i, j), is the length of the shortest path between i and

j.11 Then, agent i’s kth-degree neighborhood is defined as:

Dk
i (G) = {j : d(i, j) = k} (1)

Cooperation capital. We consider the cooperation capital of a network to be the net-

work’s ability to facilitate interactions that benefit from cooperation and community en-

forcement, such as risk sharing and social insurance. This corresponds closely to the notion

of favor capital in Jackson (2020), defined as the network’s “ability to exchange favors and

transact with others through network position and repeated interaction and reciprocation”

(p.315).

Cooperation capital is linked to different network topologies than information capital.

In particular, a consistent set of results has shown that group enforcement is strong and

cooperation is efficient when local subnetworks are tightly interconnected (see references

in footnote 7). In particular, Ali and Miller (2016) model a dynamic game of repeated

cooperation and find that a clique network (a completely connected network) generates

more cooperation and higher average cooperation capital than any other networks; Jackson,

Rodriguez-Barraquer and Tan (2012) model a game of repeated favor exchanges and highlight

the importance of supported relationships, where a link is supported if the two agents of the

link share at least one common friend. Our empirical analysis thus highlights two related

measures of network interconnectedness: network support, the probability that a friend has

one or more common friends; and network clustering, the probability that two friends are

11If there is no path between i and j, then d(i, j) = ∞.
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connected to each other.12 Formally,

Supporti(G) ≡
#{j : Gij = 1 & (G2)ij ≥ 1}

#{j : Gij = 1}
(2)

Summary. As is evident in Figure 2, the topological structure of social networks can be

complex. In Appendix A1, we develop a structural model of how social capital aggregates in

social networks, which draws a sharper contrast between topologies that provide information

capital and topologies that provide cooperation capital. In the regression analysis that

follows, we rely on two simplified network statistics that capture the essence of these different

topologies: % Friends with common support, a proxy for cooperation capital, defined by (2);

and Unique friends of friends, a proxy for information capital, defined by D2
i (G) from (1).

We will also show results pertaining to i’s degree centrality, D1
i (G), which simply counts the

number of unique individuals with whom each person communicates. We will also separately

account for the strength of a social tie, which we measure as the number of (undirected) calls

between two individuals. In certain analyses we will compare strong and weak ties, where we

consider “strong” ties to be those ties in the 90th percentile of the tie strength distribution

(equivalent to 5 or more calls per month).

For most of the analysis that follows, we partition the full social network of Rwandan

mobile subscribers (containing approximately 800,000 individuals) into 27 location-specific

subnetworks, each of which is defined by the administrative districts of Rwanda.13 Thus, we

calculate (1) and (2) separately for each subnetwork Gd, which only has entries for individuals

who reside in d. This simplifying assumption dramatically expedites our computational

analysis, but assumes that agent i cannot derive social capital from a given district d via

people residing outside d. This is a strong assumption since it is likely that, for instance,

i would receive information about d from their direct contacts at home (as well as other

districts ¬d). We therefore include analysis that shows how our main results are affected by

relaxing this assumption (see Section 4.3).

2.2 Modeling migration

Internal migration in Rwanda. Internal migration is a prominent feature of most de-

veloping countries. According to the United Nations Population Division (2013), there are

12Support is undefined when an individual has no friend and it is always zero when an individual has only
one friend.

13Our analysis groups the three smaller and contiguous districts that comprise the capital of Kigali into
one “district”.
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an estimated 762 million internal migrants in the world. Yet, survey-based data on internal

migration are notoriously unreliable, particularly in developing countries where many mi-

grations are temporary (Deshingkar and Grimm, 2005, McKenzie and Sasin, 2007, Carletto,

de Brauw and Banerjee, 2012, Lucas, 2015).

Our empirical analysis focuses on internal migration in Rwanda, a small agricultural

economy in East Africa. Rwanda has high rates of poverty, estimated by the National

Institute of Statistics of Rwanda (2012) to be 56.7% in 2005 (the beginning of the period

we study) and 44.9% in 2010-2011; extreme poverty likewise fell from 35.8% in 2005 to

24.1% in 2010-2011. More broadly, this period was one of strong economic growth and

poverty reduction (World Bank Group, 2017). The World Bank attributes 32 percent of

the reduction of poverty to agricultural production and commercialization and 27 percent to

nonfarm employment, with the share of nonfarm employment increasing from 8 percent in

2002 to 26 percent in 2011 (World Bank Group, 2015).

While fewer than 4% of Rwandan residents are born abroad, internal migration in Rwanda

is common. According to the National Institute of Statistics of Rwanda (2014), roughly 20%

of the resident population has experienced a lifetime migration, with similar migration rates

for men and women. As with many predominantly agricultural societies, the most frequent

type of internal migration in Rwanda is from one rural location to another (Lucas, 2015).

For instance, the World Bank estimates that between 2005-2011, roughly two thirds of all

migrants went to rural destinations; less than 20% of migrants were from rural to urban

areas (World Bank Group, 2017). Beginning in 2013 (shortly after the period we study), the

Government of Rwanda’s economic development strategy (EDPRS II) explicitly prioritized

urbanization and developing secondary cities as poles of growth (World Bank Group, 2017).

The push and pull factors driving internal migration in Rwanda have varied over the

last few decades. The 1994 genocide and surrounding conflict were major drivers of internal

migration in the 1990s, but conflict has been far less common since 2000. While the National

Institute of Statistics of Rwanda (2014) did not collect data on migration motives, their

analysis of patterns of urban and rural migration by gender “suggests that males mainly

migrate toward urban areas for employment purposes while women tend to move shorter

distances, either for marriage or agricultural purposes” (p. 7). Likewise, a series of reports

from the Famine Early Warning System highlights the role that agriculture and construction

play in driving labor migration, but also emphasizes the unpredictability of this demand

(FEWS NET Rwanda, 2014).

The most comprehensive quantitative study of internal migration in Rwanda, conducted
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by the World Bank Group (2017) and based on nationally representative household survey

data from 2014 (EICV4), points to push and pull factors that are common in many African

countries: “Employment and density — or their absence — are the primary push and pull

factor for migration in Rwanda. Rural-to-urban migration is fueled by skills, with higher-

educated rural dwellers seeking better opportunities and higher returns to education in more-

densely populated urban areas. The lack of land is another important push factor driving

rural migration to the cities, as well as better access to public services and infrastructure.

The opposite is also true, with the lack of skills and education, the high cost of living in

the city, and, in secondary cities, the lack of access to public services, all pushing people to

move from urban to rural areas... Rural-to-rural migration is fueled by higher population

density in the origin district, with less-educated migrants moving to other low-density rural

districts where they hope to farm, primarily in the Eastern Province” (page 12).

Measuring migration with mobile phone data. We use mobile phone data to provide

quantitative insight into the migration patterns of mobile phone owners in Rwanda. Every

time a person uses a mobile phone in Rwanda, the phone company records the approximate

location of the subscriber at the time of the event. We use these logs to reconstruct each

individual’s history of migration, building on prior methodological work developing methods

to infer migration from mobile phone data (cf. Blumenstock, 2012, Lai et al., 2019).

Full details of these methods are described in Appendix A3. To summarize, we use the

phone data to infer the district of residence d of every individual i in each calendar month

t (Figure 3). From this sequence of residential locations, we then determine whether or

not each individual migrates in each month. Following Blumenstock (2012), we say that a

migration occurs in month t+1 if three conditions are met: (i) the individual’s home location

is observed in district d for at least k months prior to (and including) t; (ii) the home location

d′ in t + 1 is different from d; and (iii) the individual’s new home location is observed in

district d′ for at least k months after (and including) t+1. Individuals whose home location

is observed to be in d for at least k months both before and after t are considered residents,

or stayers. Individuals who do not meet these conditions are treated as “other” (and are

excluded from later analysis).

Using this approach, we are able to characterize very granular patterns of internal migra-

tion in Rwanda. Summary statistics are presented in Table 1. The first column shows total

rates of migration in a single month of the data, using k = 2, which defines a migration as

an instance where an individual stays in one district for at least 2 months, moves to a new

district, and remains in that new district for at least 2 months. The aggregate migration
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rate in January 2008 is 4.9%; 53.4% of migrants travel from one rural district to another,

23.2% travel from rural to urban districts and 23.4% travel from urban to rural districts.

An advantage of the data is that they can provide a more granular perspective on internal

migration than can be achieved with traditional methods. For instance, the columns of

Table A1 disaggregate migration events into several sub-types that are prominent in the

literature on internal migration in developing countries (cf. Todaro, 1980, Lucas, 1997, 2015).

We observe a large number of repeat and circular migrants, with a majority of migrants

traveling long distances. The data also make it possible to disaggregate migration rates by

length of stay. The rows of Table A1 show how the implied migration rate decreases as the

minimum stay length k is increased. Such comparisons would be difficult with traditional

survey data, which typically capture a single definition of migration. In later analysis, we

show that certain results depend on this definition. But unless otherwise noted, our results

define migration as a minimum stay length of k = 2, as this most closely matches official

statistics on internal migration provided by the Rwandan government.14

2.3 Data limitations and validation

While mobile phone data provide uniquely granular insight into the social networks and

migration decisions of a large population, they also have several important limitations.

Non-representative population. During the period under study (early 2005 to early

2009), mobile phone penetration rose from roughly 5% to 22% (estimates based on the num-

ber of subscribers who appear in our dataset). During this time, mobile phone subscribers

in Rwanda were not representative of the larger Rwandan population; survey evidence sug-

gests they were significantly wealthier, older, better educated, and are more likely to be

male (Blumenstock and Eagle, 2012). While this non-representativeness limits the external

validity of our analysis, survey evidence suggests that the population of phone owners and

the population of migrants have similar demographic characteristics.15 More importantly,

our empirical specifications are designed to limit the scope for patterns of phone ownership,

including trends in mobile penetration over time, to bias our results — see the discussion of

omitted variable bias and shift-share analysis in Section 3.

14According to the 2012 census: 9% of Rwandans are living in a place other than the place they lived
in 5 years prior. According to the 2009 Comprehensive Food Security and Vulnerability Analysis, 12% of
Rwanda households have a member who migrated in 3 months prior to survey (Feb-Mar 2009).

15For instance, the age distribution of migrants estimated from 2012 government census data (National
Institute of Statistics of Rwanda, 2014, Figure 11) is similar to the age distribution of a representative survey
of mobile phone owners in 2009 (Blumenstock and Eagle, 2010, Figure 2).
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Phones are not people. The unique identifiers we observe are for mobile phone numbers,

not individuals. As noted above, we attempt to limit the extent to which firms and organi-

zations influence our analysis by removing phones with unusually high activity (as well as

any traffic associated with those phones). Still, when multiple people share the same phone

number, we may overestimate the size of an individual’s network. It is also possible that a

single individual might use multiple phone numbers, but we believe this was less common

since there was only one dominant phone operator at this time. In principle, our data make

it possible to uniquely identify devices and SIM cards, in addition to phone numbers. Of

these, we believe that phone numbers (which is portable across devices and SIM cards) most

closely correspond to unique individuals.

Construct validity. The social network we observe is the network of mobile phone rela-

tions, which is a subset of all true social relations in Rwanda. This subset is non-random: it

is biased toward certain demographic groups; it systematically understates certain types of

relationships (such as those that are primarily face-to-face); and may overstate other more

transient or functional relationships (such as with a shopkeeper). We address some of these

concerns through robustness tests that vary the definition of “social tie,” for instance by

only considering edges with several observed communication events (see Section 4.4). Other

concerns are ameliorated by the fact that much of our analysis focuses on long-distance re-

lationships, and during this period in Rwanda the mobile phone was the primary means of

communicating over distance.

Related, we measure migration based on the movement of phones, rather than with

traditional survey-based instruments. Prior work suggests that patterns of migration inferred

from mobile phone data broadly match inferences drawn from other sources — this includes

work in Rwanda using the same dataset as in this paper (Blumenstock, 2012, Williams

et al., 2013), neighboring countries in East Africa (Wesolowski et al., 2013a,b, Pindolia

et al., 2014), as well as other low-income (Bengtsson et al., 2011, Lu et al., 2016, Lai et al.,

2019) and wealthy nations (Lenormand et al., 2014). In our context, the aggregate patterns

of population flows that we calculate from the mobile phone data between 2005 and 2009 are

broadly similar to those reported in the 2012 Rwandan census, but there are discrepancies

between the two measurements. For instance, Figure A1 compares estimates of internal

migration from the phone data (red bars) to those from the census (blue bars), as reported

by National Institute of Statistics of Rwanda (2014, p.29). These inconsistencies could be

due to the non-representativeness of phone owners, to differences in how the two instruments
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define migration,16 or to the fact that mobile phone data is a more sensitive instrument for

detecting human mobility than the typical census questionnaire.

3 Identification and estimation

The focus of this paper is on understanding how social networks influence the decision to

migrate. While a host of other factors also influence that decision — from wage and amenity

differentials to physical distance and associated migration costs — we study how, holding all

such factors fixed, variation in social network structure systematically correlates with migra-

tion decisions. In the stylized example of Figure 1, we ask whether a person with network G1

is more likely to migrate than someone with network G2, whose network is marginally more

interconnected and would be expected to provide marginally more cooperation capital. We

similarly compare the migration decisions of such individuals to individuals with network G3,

which is slightly more extensive and would be expected to provide slightly more information

capital. In practice, of course, the actual network structures are much more complex (as in

Figure 2). We therefore use statistical models to estimate the effect of marginal changes in

complex network structure on subsequent migration decisions.

The central difficulty in identifying the causal effect of social networks on migration is

that the social networks we observe are not exogenous: people migrate to places where their

networks have certain characteristics, but this does not imply that the network caused them

to go there. Here, we describe our estimation strategy, and the identifying assumptions

required to interpret our estimates as causal.

Simultaneity

An obstacle to understanding the causal effect of networks on migration is that migration

decisions may also shape networks. This would be expected if, for instance, migrants strate-

gically formed links to destination communities in anticipation of migration, or simply made

a large number of phone calls to their destination before migrating.

We address this concern in three principal ways. First, we study the effect of lagged

network characteristics on the current decisions of migrants. Specifically, we relate the

migration decision made by individual i in month t to the structure of i’s social network

16Our algorithm defines a migrant as someone who remains in one district for 3 or more months and
then moves to another district for 3 or more months. The Rwandan census does not capture this type of
short-term migration; we instead show the census estimates of internal recent migrants, which are defined
as “a person who moved to his/her current district of residence five years or less prior to the census.”
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s months prior. As a concrete example, when t = August 2008 and s = 2, we relate the

August 2008 migration decision to the structure of the individual’s social network in June

2008. Our main specifications use s = 2, but we later show that our results are unchanged

when with longer lags. Second, rather than focus on the number of direct contacts a migrant

has at home and in the destination, we focus on the connections of those contacts, holding

the number of contacts fixed (as in Figure 1). This is because it seems easier for a migrant to

directly control the number of contacts they have in the destination and at home than it is

for them to alter the higher-order structure of their social network. Third, in tests described

in Section 4.4, we adopt a “shift-share” specification that relates migration decisions to

changes in an individual’s higher-order network (for instance, between t − 12 and t − 2),

holding lower-order network structure fixed, in order to further limit the extent to which the

individual could endogenously shape their network.

These techniques reduce, but do not eliminate, the potential for simultaneity. In partic-

ular, a migrant might plan her migration many months in advance of migration, and in that

process could change her higher-order network structure — for instance by asking a friend

to make new friends on her behalf, or by encouraging two friends to talk to each other. To

gauge the extent to which this might bias our results, we run several empirical tests, and

find little evidence of such anticipatory behavior. For instance, Figure 4 shows, for a random

sample of migrants, how the geographic distribution of migrants’ social networks changes

over time. Prior to migration, roughly 40% of the average migrant’s contacts are in the

origin and 25% are in the destination; three months after migration, these proportions have

switched, reflecting how the migrant has adapted to her new community. Notably, however,

migrants do not appear to strategically form contacts in the destination immediately prior

to migrating; if anything, migrants shift their focus to the people in the community they

are leaving. These compositional changes do not mask a systematic increase in the number

of contacts in the destination, or the number of total calls to the destination: Figure A2

indicates that the total number of contacts increases over time, but there is no sudden spike

in the months before migration; Figure A2b shows analogous results for total call volume.

As a sort of ‘placebo’ test, Figure A3 shows the corresponding figure for non-migrants, where

no changes are observed in the “migration” month, as expected (since no migration takes

place for this sample).

What matters most to our identification strategy is that we similarly find no evidence

that migrants are systematically altering the higher-order structure of their social networks

in the months prior to migration. In particular, Figure A4 indicates that migrants have a
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relatively constant number of unique friends of friends over time (with no noticeable shift

in the months prior to migration). Figure A5 shows similar results for the level of common

support in the network.17

Omitted Variables

The second main threat to identification is the fact that network structure may be a proxy for

other characteristics of the individual (e.g., wealth, ethnicity) and location (e.g., population

density, wages) that also influence migration. Our main strategy for dealing with such

omitted variables is to include an extremely restrictive set of fixed effects that control for

many of the most concerning sources of endogeneity. This strategy is possible because of the

sheer volume of data at our disposal, which allow us to condition on factors that would be

impossible in regressions using traditional survey-based migration data.

Our preferred specification includes fixed effects for each individual (roughly 800,000

fixed effects), for each origin-destination-month tuple (roughly 18,000 fixed effects), and for

the number of direct contacts in the destination (roughly 100 fixed effects). The individual

fixed effects absorb all time-invariant individual heterogeneity (such as wealth, gender, eth-

nicity, personality type, family structure, and so forth), and addresses the fact that some

people are inherently more likely to migrate than others (and have inherently different social

networks). The origin-destination-month fixed effects control for any factor that similarly

affects all individuals considering the same origin-destination migration in the same month.

This includes factors such as physical distance, the cost of a bus ticket, location-specific

amenities that all migrants value equally, average wage differentials, and many of the other

key determinants of migration documented in the literature (including the usual “gravity”

effects in a standard trade or migration model).18 Finally, we include fixed effects for the

number of first-degree contacts in the destination in order to isolate the effect of differences

in higher-order network structure on migration.

17These tests are similar in spirit to those used by Büchel et al. (2020), who regress migration decisions in
t on social network structure aggregated over the period from t− 6 until t− 4. Using Swiss cellphone data,
the paper finds an increase in direct calls to the destination beginning in t− 3; it does not present analysis
on anticipatory changes in higher-order structure prior to migration.

18For instance, we know that rates of migration are higher to urban centers, and that social networks
in urban centers look different from rural networks. Including a destination fixed effect removes all such
variation from the identifying variation used to estimate the effect of networks on migration. The origin-
destination-month fixed effects remove destination-specific variation, as well as more complex confounding
factors that vary by destination and origin and time, such as the possibility that the seasonal wage differential
between two districts correlates with (lagged) fluctuations in social network structure.
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Identification

To summarize, the identifying variation in our main specification is (i) within-individual over

time and (ii) within-individual over potential destinations — in both instances, after con-

trolling for any factors that are shared by all people considering the same origin-destination

trip in the same month, and for any effects that are common to all people with the same

number of direct contacts in the destination. An example of (i) could occur if, for instance,

an individual had been considering a move to a specific destination for several months, but

only decided to migrate after his friends in the destination became friends with each other

(the G2 vs. G1 comparison of Figure 1) — and if the increased interconnectedness exceeded

the average increase of networks in that destination (as might occur around the holidays,

for instance). An example of (ii) could occur if, in a given month, a single migrant were

choosing between two destination districts, had the same number of contacts in each district,

and then decided to migrate to the district where his contacts were more interconnected.

Prima facie, it may seem unlikely that such small differences would shape the decision to

migrate, but our data allow us to ascertain whether, across millions of individual migration

decisions, such a general tendency exists.

The fixed effects we include significantly reduce the scope for omitted variables to bias our

estimates of the effect of network structure on migration, but they do not eliminate such bias

entirely. If, for instance, origin-destination wage differentials are individual-specific, our fixed

effects will not help. This might occur if carpenters’ networks in a particular district grew

more interconnected over time (relative to carpenter network growth in other districts) than

farmers’ networks in that district (again relative to farmers’ networks in other locations), and

if migration rates of carpenters to that district are higher for reasons unrelated to network

structure. Likewise, our use of lagged network structure reduces, but does not eliminate,

the likelihood that a migrant would first decide to migrate and then modify his network

accordingly.

We revisit these concerns, and other possible threats to identification, in Section 4.4,

after introducing the estimation strategy and presenting the main results. In Section 4.4, we

precisely state the identifying assumption, discuss the most likely threats to identification,

and perform a number of tests to assess the plausibility of this identification strategy.

Estimation

Formally, for an individual i considering a move from home district h to destination district

d in month t, we wish to estimate the effect of a vector of (s-lagged) network characteristics
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Zihd(t−s) on the migration decision Mihdt, where Mihdt is a binary variable equal to 1 if the

individual chooses to move from h to d at t and 0 otherwise. We estimate this in two ways,

using either a linear model or a discrete choice (multinomial logit) model.

In the linear model, we estimate:

Mihdt = β′Zihd(t−s) + πhdt + µi +
∑

k

ηk✶(Did(t−s) = k) + ǫihdt (3)

where πhdt are (home district * destination district * month) fixed effects and µi are indi-

vidual fixed effects. We also condition on i’s degree centrality in the destination Did(t−s)

using a set of fixed effects ηk to control for factors that are invariant across all people with

the same number of contacts in the destination. The vector β contains the coefficients of

interest, which indicate the average effect of network properties Zihd(t−s) on the probability

of migration. This vector of network characteristics may contain characteristics of the des-

tination network Zid(t−s) as well as characteristics of the home network Zih(t−s).
19 Except as

noted, specifications use cluster robust standard errors, two-way clustered by individual and

by home-destination-month (Cameron, Gelbach and Miller, 2011). Alternative treatments

of the standard errors are discussed in Section 4.4.

When estimating (3), we include one observation for each potential destination d of each

individual i in each month t. We define a ‘potential destination’ as any non-home district

d 6= h. Thus, the regression includes at most 26 observations for each individual i in each

month t. Individuals are only considered in months where they can be classified as a migrant

or a non-migrant in that month, and when the relevant measures of network structure can

be calculated from the CDR. When an individual is classified as “other” (see Section 2.2), or

when network support is undefined (see Section 2.1), those observations are excluded from

the regression.20

We consider the linear model to be our reference specification, since it can be estimated

quickly on a very large dataset, even with computationally demanding fixed effects (subse-

quent robustness tests will include over 600 million fixed effects). However, the linear model

is misspecified, since in any month the set of choices the individual faces are not independent.

19In specifications that include higher-order characteristics of the home network Zih(t−s), we likewise
condition on i’s degree centrality at home with a set of fixed effects that control for factors that are invariant
across all people with the same number of home contacts Hih(t−s). This adds to (3) an additional term
∑

j ηj✶(Hih(t−s) = j).
20Network support is undefined or always zero when i has fewer than 2 contacts in the destination; those

individual-month-destination observations are excluded when estimating (3). Results are qualitatively similar
when network support is set to zero in these observations and they are included in the regression.
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We therefore also present results estimated using a discrete choice model.

In the discrete choice setting, each individual i faces 27 mutually exclusive choices in

month t, one for each district d in Rwanda (including the home district h). We assume the

indirect social capital i would receive from being in d is a function of fixed characteristics of

d in the month the choice is being made (πdt), individual characteristics (µi), and a vector

of choice-specific attributes that may also differ across individuals (Zid(t−s)):

Uidt = ✶(d 6= h)
[

β′
1Zid(t−s)

]

+ ✶(d = h)
[

γ + β′
2Zid(t−s)

]

+ πdt + µi + ǫidt (4)

Our focus is on the influence of i’s network Zid(t−s), which the above formulation allows to

differ for home networks (d = h) and destination networks (d 6= h). Thus, β1 and β2 indicate

the influence of home and destination networks, respectively. The parameter γ captures the

average tendency for individuals to not migrate.

Assuming that ǫidt is drawn from an extreme value distribution, i will choose d at time t

with probability:

P (Midt = 1) =
exp(Ũidt)

Σd′ exp(Ũid′t)

which can be estimated with a conditional logit model (using Ũ to denote U without the

disturbance term ǫ).21 We omit µi from Ũ because it does not vary across the set of choices

faced by i in month t. As with the linear model, we will also present conditional logit results

that condition on i’s degree centrality in the destination by adding a vector of ηk fixed effects

to (4), just as in (3).22

4 Results

Table 2 summarizes the main results from estimating the linear model (3). We find that on

average, each additional contact in the destination is associated with a 0.37% increase in the

likelihood of migration (Panel A, column 1), and each contact at home is associated with

a 0.04% decrease in that likelihood (Panel B, column 1). Columns 2-4 indicate the average

effect of changes in higher-order structure, after controlling for the immediate contacts of

21We use the approach described by Eaton, Kortum and Sotelo (2012) and Sotelo (2019) to estimate
the multinomial model by Poisson pseudo maximum likelihood, using the ppmlhdfe package to facilitate
estimation with high-dimensional fixed effects (Correia, Guimarães and Zylkin, 2019).

22In specifications that include higher-order characteristics of the home network Zih(t−s), we likewise
condition on i’s degree centrality at home with a set of fixed effects that control for factors that are invariant
across all people with the same number of home contacts Hih(t−s).
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the individual (i.e., after including the “degree fixed effects”). The second and third rows

of Panel A highlight two main results which we will revisit below: migrants are more likely

to go to places where their destination networks are more interconnected; but they are not

more likely to migrate to destinations where their contacts have a large number of contacts.

Where the first column of Table 2 separately estimates the “push” and “pull” forces of

networks on migration (cf. Hare, 1999), Table 3 jointly estimates both effects, to allow for a

more direct comparison. Comparing the coefficients on Destination Degree and Home Degree

in the first two columns, for instance, we find that in determining migration outcomes, the

marginal effect of an additional contact in the destination is roughly 6.5 to 7.5 times as

important as an additional contact at home.

Results from estimating the multinomial logit model (4) are presented in Table 4, and

are broadly consistent with those of the linear model.23 Migrants are more likely to likely to

migrate to destinations where their networks are interconnected, but are less likely to move

to destinations where their contacts have a large number of contacts. Comparing home and

destination networks, the coefficients associated with destination contacts are 5 to 6 times

as large as those associated with home contacts.24

In the subsections below, we disaggregate these results, showing how the average effects in

Table 2 mask considerably heterogeneity for different types of social networks and for different

types of migrants. We study this heterogeneity using variations of the linear model (3).

4.1 The effect of network size, in the destination and at home

The first coefficient in Table 2 validates a central thesis of prior research on networks and

migration, which is that individuals are more likely to migrate to places where they have

more connections. This relationship is disaggregated in Figure 5a, which shows how the

average migration rate varies by degree centrality at destination (i.e., the number of unique

contacts of the individual). We observe that, for instance, roughly 4% of individuals with

10 contacts in a potential destination d in month t− 2 migrate to that location at t.

This figure also provides some intuition for the role of fixed effects in our identification

strategy. The average migration rates depicted Figure 5a are likely confounded by omitted

23Note that the sign of the coefficients associated with home network characteristics (bottom four rows)
should be interpreted differently with the multinomial logit (Table 4) than with the linear model (Table 3):
With the linear model, the coefficient indicates how the likelihood of leaving home changes with Zih(t−s); with
the multinomial logit, the coefficient indicates how the likelihood of choosing home changes with Zid(t−s).

24Table A2 presents multinomial logit results more comparable to Panel A of Table 2, by looking at the
choice of destination among actual migrants (i.e., estimated on the subset of individual-months in which the
individual is observed to migrate).
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variables. For instance, people typically know more people in the urban capital of Kigali

than in other districts, and rates of migration to Kigali are higher than to other districts.

Thus, Figure A6 shows the relationship between migration and degree centrality after condi-

tioning on a series of increasingly restrictive fixed effects. Figure A6a shows results with no

fixed effects; Figure A6b includes destination district fixed effects (which most immediately

addresses the Kigali concern described above); Figure A6c replaces destination fixed effects

with more stringent destination-origin-month fixed effects (πhdt); Figure A6d adds individual

fixed effects (µi).
25 In all figures, the qualitative relationship is remarkably unchanged. In-

dividuals with more contacts in a destination are more likely to migrate to that destination.

This relationship is positive, monotonic, and approximately linear with slope of unity.

Just as migrants appear drawn to destinations where they have a large number of con-

tacts, migrants are less likely to leave origins where they have a large number of contacts.

Figure 5b shows the monotonically decreasing relationship between migration rates and the

individual’s degree centrality at home, where the probability of leaving home decreases pro-

portional to the size of the home network.

4.2 Higher-order network structure

We next examine how the higher-order structure of the individual’s network — i.e., the

connections of the individual’s contacts — relate to subsequent migration decisions. We focus

on the proxies for network interconnectedness and extensiveness described in Section 2.1.

Network ‘interconnectedness’

Across all potential migrants, we earlier observed in Table 2 that the interconnectedness of

the individual’s destination network had a positive and significant effect on migration —

suggesting that, on average, networks like G2 in Figure 1 are more attractive than networks

like G1.
26

25Specifically, Figure A6 shows the ηk coefficients from estimating the following equation, with and without
the fixed effects shown in brackets:

Mihdt =
∑

k

ηk✶(Did(t−s) = k) + [πd+][πhdt+][µi+]ǫihdt

26The fact that people are more likely to go to places where their networks are interconnected may seem
natural, but in other settings, the opposite result has been documented. For instance, Ugander et al. (2012)
show that people are more likely to sign up for Facebook when their pre-existing Facebook friend network
is less interconnected.
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Figure 6 disaggregates this average effect, showing how migration rates vary with differ-

ent levels of network interconnectedness. The left panels (a and c) show how the average

migration rates varies with network support, the measure of interconnectedness defined by

equation (2). The right panels (b and d) condition on a rich set of fixed effects to help with

causal identification, by plotting the βk coefficients from the following specification:27

Mihdt =
∑

k

✶(Did(t−s) = k)
[

ηk + β′
kZihd(t−s)

]

+ πhdt + µi + ǫihdt (5)

The right panels of Figure 6 reinforce the prior finding that people are systematically

drawn to places where their networks are more interconnected: all coefficients in Figure 6b

are (weakly) positive, and all coefficients in Figure 6d are (weakly) negative. The figure

also adds a level of nuance that would not be possible with traditional survey-based data.

For instance, the fact that the βk coefficients in Figure 6b are generally increasing indicates

that as the potential migrant has more direct contacts in the destination, the value of in-

terconnections between those contacts increases. Appendix Figure A7 finds qualitatively

similar results when using network clustering, instead of network support, as a measure of

interconnectedness.28

Network ‘extensiveness’

The relationship between migration and network extensiveness is more surprising and subtle.

We are interested in the generalized comparison between G1 and G3 in Figure 1, and use

the size of an individual’s second-degree network D2
i (G) (i.e., their unique friends of friends)

as a measure of extensiveness. Without controlling for the size of an individual’s network,

there is a strong positive relationship between migration and extensiveness in the destination

(Figure 7a), and a strong negative relationship with extensiveness in the origin (Figure 7c).

The shape of these curves resemble the relationship between migration rate and degree

centrality shown earlier in Figure 5: average migration rates increase roughly linearly with

the number of friends of friends in the destination, and decrease monotonically with friends

of friends at home.

Of course, the number of friends of friends a person has is largely determined by the

27This specification is directly analogous to the original linear model (3), but it now estimates the effect
of network support Zihd(t−s) on migration separately for each unique value of network size k.

28The distinction between support and clustering is that the former counts the proportion of i’s friends
with one or more friends in common, the latter counts the proportion of all possible common friendships
that exist – see Jackson (2010).
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number of friends that person has. Thus, Figures 7b and 7d show how the number of friends

of friends relates to migration, holding fixed the number of friends (as well as the other fixed

effects in model (5)). For the home network, Figure 7d indicates the expected pattern: the

fact that all of the coefficients are negative suggests that given a fixed number of friends at

home, people are less likely to leave when those friends have more friends. We also observe

that the number of friends of friends at home matters more for people with fewer direct

contacts — by the time an individual has a very large number of direct home contacts, their

contacts’ contacts matter less.

The surprising result is Figure 7b, which indicates that the likelihood of migrating does

not generally increase with the number of friends of friends in the destination, after condi-

tioning on the number of friends. The friend of friend effect is positive for people with 1− 3

destination contacts, but negative for people with > 4 destination contacts. Averaged over

all migrants, this effect is negative and insignificant (row 3 of Tables 2, 3 and 4). This result

is difficult to reconcile with standard models of information diffusion(e.g., Kempe, Kleinberg

and Tardos, 2003, Banerjee et al., 2013). Indeed, much of the literature on migration and

social networks suggests that, all else equal, individuals would be more likely to migrate if

they have friends with many friends, as such networks would provide more natural conduits

for information about job opportunities and the like.

We run a large number of empirical tests to convince ourselves that this pattern is not

an artifact of our estimation or measurement strategy — several of these are described in

Section 4.4. However, the data consistently indicate that the average migrant is no more

likely to go to places where she has a large number of friends of friends. This is perhaps most

transparent in Figure A8, which shows the distribution of the count of friends of friends for

all migrants and non-migrants with exactly 10 friends in the potential destination. Among

this sample, it is apparent that, on average, non-migrants have more friends of friends in the

destination networks than migrants.

4.3 Heterogeneity and the ‘friend of friend’ effect

The effect that networks have on the “average migrant” masks considerable heterogeneity

in how different types of migrants are influenced by their social networks. Tables A3-A5

disaggregate the results from Table 3 along several dimensions that are salient in the migra-

tion literature: whether the migrant has previously migrated to the destination (Table A3);

whether the migration is between adjacent districts or over longer distances (Table A4); and

whether the migrant stays in the destination for a long period of time (Table A5).
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Heterogeneity and unawareness of the broader network

Several patterns can be discerned from these tables, but we focus our attention on how the

network “extensiveness” effect changes with these different subgroups, as that was the most

unexpected of the above results. Here, we find that for certain types of migration — repeat

migrations, short-distance migrations, and long-term migrations — the number of friends of

friends is positively (though not always significantly) correlated with migration rates. Each

of these types of migration are significantly less common than the typical migration event

(a first-time, long-distance, and short term migration) — hence the statistically insignificant

negative average effect observed in Table 2.

This heterogeneity suggests one possible explanation for the unexpected null ‘friend of

friend’ result: the average migrant may simply be unaware of the higher-order structure of

their destination network. Such an explanation is supported by several other studies that

find that people have incomplete information about the friends of their friends (Friedkin,

1983, Casciaro, 1998, Chandrasekhar, Breza and Tahbaz-Salehi, 2016). This information

asymmetry is likely to be most severe when the would-be migrant lives far from, or has

less experience with, the destination friend’s community. And indeed, this is what the

heterogeneity suggests: the migrants who are positively influenced by extensive destination

networks are the migrants who seem likely to be more familiar with the structure of those

networks. When the destination is more familiar, it begins to resemble the home network,

where Banerjee et al. (2019) argue that people have good information on (proxies for) their

friends’ centrality.

Strong ties, weak ties, recent migrants, and recent visits

A different explanation for the ‘friend of friend’ result is suggested by a closer analysis of the

role of strong and weak ties in migration. Here, and consistent with recent work by Giulietti,

Wahba and Zenou (2018), we find that both strong and weak ties matter in migration: the

effect of a strong destination tie is 20-50% larger than that of a weak destination tie; at home,

the effect of a strong tie is 2-3 times as large as the effect of a weak tie. These results are shown

in Table A6, which defines a strong tie as one that supports five or more communication

events in the reference month (the 90th percentile of communication frequency).

Recent and co-migrants have a similar effect: people are more likely to go to places where

they know recent migrants (defined as a contact who previously made the origin-destination

migration that the individual is considering). Coefficient estimates in column 3 of Table A7

indicate that knowing a recent migrant in the destination increases the likelihood of migration
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by roughly 3.5 times the amount as knowing anyone else in the destination. The effect is

larger for recent migrants who arrived in the destination very recently (last month) than for

recent migrants who arrived at any point prior. Such evidence is consistent with the fact

that households and extended families frequently make joint labor allocation decisions (cf.

Rosenzweig and Stark, 1989).

We also investigate the possibility that in-person visits to the destination could provide

(perhaps complementary) information to potential migrants. Table A8 controls for a binary

variable indicating whether i ever appeared in district d in the month prior to t. In column

2, a “prior visit” is defined as making or receiving a call or text message from a tower in d; in

column 3, we only consider activity that occurs between 6pm and 7am, in an effort to capture

overnight visits. There is a strong correlation between such visits and migration (the effect is

3-5 times as large as the effect of an additional direct contact in the destination). Controlling

for these in-person visits does not change the qualitative role that networks play in shaping

migration, but it does noticeably attenuate the effect of destination network structure (i.e.,

the effect of direct contacts decreases by 9-15%; the effect of support decreases by 35-50%;

and the effect of friends of friends decreases by 2-30%), suggesting the in-person experience

might substitute for network connections. Controlling for in-person visits has little effect on

the influence of home network structure.

In the above three tests, we find evidence of the many factors that influence migration:

having strong social ties to the destination, recent contacts who migrated there, and in-

person visits. Most important to our main results is the fact that none of these factors

dominate the migration decision: after controlling for these factors, we still see a strong

association between destination support and migration, but no positive relationship with

destination friends of friends.

Also interesting is the effect of higher order tie strength on migration decisions. In

particular, our main results suggest that a migrant i is drawn to locations where i’s contact

j has a friend in common k, but that i is indifferent or repelled if k is not a common friend

of i. However, this average effect hides a more nuanced pattern: when disaggregating by tie

strength, we observe that the negative effect is driven by situations where the i-j tie is weak

but the j-k tie is strong — in other words, when the migrant has a tenuous connection to

the destination and that tenuous connection has strong connections to other people in the

destination.

These results are presented in Figure 8, which summarizes the regression coefficients from

Tables A9 and A10. The figure indicates the sign of the regression coefficient (using +/−
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labels) from a regression of i’s migration decision on the number of different types of i-j links,

where type is determined by the strength of the i-j link (strong ties shown with thick lines,

weak ties shown with thin lines) and the existence and strength of the j-k link. The four

figures on the left, based on Tabls A9, indicate that migrants are generally drawn to places

where their contacts have many ties, but that they are deterred when their weak ties have

a large number of strong ties. Similarly, the set of triangles on the right show all possible

configurations of a supported i-j tie (based on Table A10), and indicate that supported links

are positively correlated with migration in all cases except when the i-j tie is weak and the

j-k tie is strong.

This heterogeneity is consistent with the notion, proposed by Dunbar (1998) and others,

that people might have a capacity constraint in the number of friendships they can effectively

support, which in turn might induce a degree of rivalry for the attention of a friend. In

our context, migrants may be drawn to places where they receive their friends’ undivided

attention.29

Beyond location-specific subnetworks

The regression results presented above calculate network extensiveness and interconnected-

ness based on location-specific subnetworks at home and in the destination. It is possible,

however, that the social capital from network connections may cross geographic boundaries.

For instance, a potential migrant i in home district h might receive information about a

destination district d from a person k (who lives in d) via a common friend j that lives at

home h or in another district ¬d. We therefore show how results change when we relax

restrictions on the location of the intermediate contact j.

Results in Table A11 suggest that the main results — and in particular the negative or

insignificant role of extensiveness — do not depend on restrictions on the location of inter-

mediate connections. Column 1 runs the same specification as Table 2 (panel A, column

4), but with an expanded set of fixed effects to facilitate comparison across columns: exten-

siveness (friends of friends) is negative and insignificant while interconnectedness (common

29Dunbar originally proposed that humans could maintain roughly 150 stable relationships, since “the limit
imposed by neocortical processing capacity is simply on the number of individuals with whom a stable inter-
personal relationship can be maintained.” In the migration context, Beaman (2012) and Dagnelie, Mayda
and Maystadt (2019) find evidence that migrants may compete with each other for economic opportunities.
See also Wahba and Zenou (2005), who empirically test the tradeoff between information and rivalry in an
Egyptian labor market survey. They show that up to a certain (network) size, the network information effect
dominates the competition (rivalry) effect so that network is always beneficial for finding a job. However,
above a certain size, the second effect dominates the first one so that agents have less chance of finding job
when network size increases.
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support) is positive and significant. Column 2 shows results when i’s direct contact j is at

home; Column 3 allows for j to be in any district other than h or d; Column 4 shows the

joint regression. In all specifications, the extensiveness coefficient is negative or insignificant.

The interconnectedness coefficient is positive and significant in all specifications except the

second.30

4.4 Robustness and identification (revisited)

Section 3 introduced our identification and estimation strategy. For our estimates to be

causal requires the identifying assumption that E[ǫihdt|πhdt, µi, ηk] = 0. In other words,

we assume that the variation in higher-order network structure we observe is exogenous,

conditional on the identity of the individual making the migration decision, the origin-

destination-month choice being made, and the number of direct contacts the individual

has in that destination in that month. Here, we discuss and test the limitations of that

assumption, focusing on the two main threats to identification highlighted in Section 3:

simultaneity and omitted variable bias.

Evidence against simultaneity: Temporal lags and ‘shift-share’ analysis

Our identification relies, in part, on the assumption that migrants do not strategically shape

the higher-order structure of their social networks after making the decision to migrate. To

support this assumption, Figures A4 and A5 indicate that, even among eventual migrants,

average higher order network structure remains stable in the months leading up to migration.

Here, we provide additional tests of the appropriateness of this identifying assumption.

First, we increase the lag between measurement of network structure and migration. Our

main specifications (e.g., Tables 2 and 3) test how migration decisions in month t (e.g.,

August 2008) relate to social network structure in month t−2 (e.g., June 2008). Tables A12

and A13 show that results are qualitatively unchanged when migration in t is regressed on

network structure in t − 6 instead. Migrants may plan migrations more than 6 months

in advance, but the similarity of the results using 2-month vs. 6-month lagged networks

suggests that strategic network formation is not driving our results.31

Second, we test a “shift-share” specification that relates migration decisions to changes

in an individual’s higher-order destination network structure, holding lower-order network

30The negative coefficient on support in column 2 is likely due to the fact that when i’s home network
includes an additional contact j who provides support to a destination connection k, this symmetrically
increases the number of supported links i has at home.

31Results, available on request, show qualitatively similar effects when using lags between 2 and 6 months.
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structure fixed. Specifically, we define an early period t0 (e.g., 6 months prior to migration)

and a late period t1 (e.g., 2 months prior to migration), and measure the change in the higher-

order network structure of each individual i between t0 and t1. In these specifications, we

“freeze” the set of i’s direct contacts at t0, in an effort to reduce the endogenous decisions

that i makes about their direct contacts (over whom they presumably have more direct

control). The identifying variation in the shift-share specification comes from changes in the

contacts of i’s “frozen” contacts.

Table A14 presents four variants of this shift-share approach. The first two columns

freeze i’s contacts from t0, and measure changes in the network based on the connections of

those t0 contacts between t0 and t1 — even if the direct contact in t0 is no longer a direct

contact in t1. The last two columns measure changes in the network based on the set of i’s

contacts who are connected to i in both t0 and t1. All specifications set the late period t1

at 2 months prior to migration. Odd columns set the early period t0 at 6 months prior to

migration; even columns set t0 at 12 months prior to migration.

The results of the shift-share analysis are broadly consistent with the main results in

Table 2. Increases in friends of friends that occur within i’s frozen-in-time contacts in the

destination are insignificantly or negatively correlated with migration. Increases in support

in the destination are positively associated with migration, though these estimates are not

always precise. We also note that the total predictive power of changes in network structure

is limited (i.e., the partial R2 values in Table A14 are all less than 0.002; see also Table A15,

which shows that changes in network structure between t− 2 and t− 6 are not predictive of

migration). If migrants were systematically shaping their higher-order networks in anticipa-

tion of migration (and in advance of the t− 2 lag used in our main specification), it is likely

that such behavior would better predict migration.

Evidence against omitted variable bias: Increasingly restrictive fixed effects

Specification (3) includes fixed effects for each individual (µi), each origin-destination-month

combination (πhdt), and each destination degree centrality (ηk). While these account for the

most likely sources of omitted variable bias, there are scenarios in which this assumption

could be violated (as in the carpenter/farmer example in Section 3). We therefore run a series

of robustness checks that further isolate the identifying variation behind the regression results

presented above.

Appendix Table A16 re-estimates the main effect shown in column 4 of Table 2 under

a variety of increasingly restrictive fixed effect specifications. Column 1 replicates the prior
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result, including fixed effects for πhdt, µi, and ηk. Column 2 in Table A16 then includes fixed

effects for each individual-month pair, so that the identifying variation comes within indi-

vidual in a given month but across potential destination districts.32 Column 3, by contrast,

includes separate fixed effects for each individual-destination pair, so that the β coefficients

are identified solely by variation within individual-destination over time.33 Column 4 in-

cludes fixed effects for each individual-Degree, exploiting variation between all destinations

where a single individual has the exact same number of contacts. Column 5, which includes

over 600 million fixed effects, isolates variation within individual-home-destination observa-

tions over time. In all instances, the coefficients of interest are quite stable, and in particular,

the average effect of additional friends of friends is either negative or insignificant (or both).

To provide better intuition for these results, imagine we want to know whether an in-

dividual would be more likely to move to a location where his friends happened to become

more connected in the months prior to migration. This is what the coefficient 0.35 in column

3 of Table A16 indicates: fixing the individual and the destination, rates of migration are

higher in the months after friends in the destination become more interconnected. To make

this more transparent, consider the following: We pull a random sample of 20,000 individu-

als who have exactly two contacts in a specific district for 4 consecutive months. We then

calculate, for each person, whether those two contacts are more likely to become connected

or disconnected at the end of the 4-month period (by regressing a dummy for triadic clo-

sure on a linear time trend); we then compare the migration rate in month 5 among the

population whose two contacts became connected relative to the migration rate in month 5

of the population whose two contacts became disconnected. The migration rate is 2.2% in

the former group, and 1.3% in the latter. In other words, when focusing on a sample who

consistently have exactly two contacts in the destination, rates of migration are higher when

a given individual’s two contacts become more connected (over the 4-month period) than

when they become more disconnected (over the 4-month period).

32Such variation would occur if, for example, in a given month, a single migrant were choosing between two
destination districts, had the same number of contacts in each district, and then decided to migrate to the
district where his contacts were more interconnected — and if that additional interconnectedness exceeded
the extent to which all networks in that destination were more interconnected.

33This could reflect a scenario where an individual had been considering a move to a particular destination
for several months, but only decided to migrate after his friends in the destination became friends with each
other (the G2 vs. G1 comparison of Figure 1) — and where that tightening of his social network exceeds the
average tightening of networks in that destination (as might occur around the holidays, for instance).
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Additional tests of robustness

We perform several additional tests to check whether the main results are sensitive to different

measurement strategies used to process the mobile phone data. Since these results show a

very similar picture and are highly repetitive, we omit them from the paper but can provide

them to interested readers upon request:

• How we define ‘migration’ (choice of k): Our main specifications set k = 2, i.e.,

we say an individual has migrated if she spends 2 or more months in d and then 2 or

more months in d′ 6= d. We observe qualitatively similar results for k = 1 and k = 3.

• How we define the ‘social network’ (reciprocated edges): In constructing the

social network from the mobile phone data, we normally consider an edge to exist

between i and j if we observe one or more phone call or text message between these

individuals. As a robustness check, we take a more restrictive definition of social

network and only include edges if i initiates a call or sends a text message to j and j

initiates a call or sends a text message to i.

• Treatment of outliers (removing low- and high-degree individuals): We re-

move from our sample all individuals (and calls made by individuals) with fewer than

3 contacts, or more than 500 contacts. The former is intended to address concerns that

the large number of individuals with just one or two friends could bias linear regression

estimates; the latter is intended to remove spammers, calling centers, “public” phones,

and large businesses.

• Standard errors: Our preferred specification uses two-way clustered standard errors,

clustered by individual (i), and by the home-destination-month combination (h∗d∗ t).

This is because we believe these are the most likely groups among which unobserved

components in outcomes would be correlated. We also investigate how alternative

approaches to clustering affect the results, including clustering by (a) i; (b) h ∗ d ∗ t;

(c) h ∗ d ∗ t and i; (d) h ∗ d ∗ t and i ∗ t; and (e) h ∗ d ∗ t and i ∗ d. Relative to the

standard errors shown in Table 2, which uses (c), standard errors are smaller under

(a), but nearly identical under (b), (d), and (e).

Summary

The fact that social networks are not randomly assigned makes it difficult to firmly establish

the causal effect of networks on migration. In our setting, we exploit the rich data at
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our disposal to develop an identification and estimation strategy that offers, in our view,

a plausible method to study the influence of higher order network structure on migration.

Specifically, we make the identifying assumption that E[ǫihdt|πhdt, µi, ηk] = 0, and use the

large quantity of data to estimate these fixed effects (πhdt, µi, ηk). This allows us to focus on

how higher order network structure, conditional on lower order structure, relates to lagged

migration decisions. The preceding sections provide evidence in support of this identifying

assumption, and against many common alternative explanations for our results. Still, it

remains an assumption, and we acknowledge that our identification is not bulletproof.

If this causal interpretation does not seem justified, the analysis nonetheless reveals a

striking and hitherto undocumented relationship between social networks and migration. In

particular, through all the robustness tests we have run, we consistently find that migrants

are more likely to go to places where their social networks have certain types of higher order

structure. In particular, migrants are more likely to go to places where their contacts are

interconnected. The presence of this positive correlation is accentuated by the fact that

migrants are not more likely to migrate to places where their networks are more extensive,

i.e., where their friends have more unknown friends.

5 Conclusion

Social networks play a critical role in economic decision-making. This paper studies the

decision to migrate in order to better understand that role. Relative to prior work on the

topic, our data provides uniquely granular visibility into the structure of social networks and

the migration events they precipitate.

Our analysis suggests several new stylized facts about the relationship between social net-

works and migration. Perhaps most surprising, we find that most migrants are not drawn to

places where their social networks are extensive. Our results suggest that this aversion may

stem from the fact that migrants may have limited information about unknown destinations,

and that they may feel competition for the attention of their well-connected friends. By con-

trast, migrants respond strongly to the interlinkages of their friend and kinship networks,

and are drawn to networks that are interconnected and embedded. Such a finding is consis-

tent with recent evidence that risk sharing and favor exchange play an important role in the

migration decision (Munshi and Rosenzweig, 2016, Morten, 2019). But we also find that the

notion of the “average migrant” can be a misleading generalization. Our data reveal rich

heterogeneity, and we find that different types of migrants — including repeat, long-term,
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and short-distance migrants — value different properties of social networks differently.

More broadly, these results highlight the role of social networks in consequential economic

decisions, and how novel sources of data can reveal how network structure influences those

decisions. In contexts ranging from product adoption (Banerjee et al., 2013) and disease

transmission (Keeling and Eames, 2005) to the spread of new ideas and innovations (Rogers,

1962, Kitsak et al., 2010), simple models of information diffusion have seen remarkable

success. Such models often support the stylized narrative that the primary function of

networks is to diffuse information about economic opportunities (cf. Rees, 1966, Ioannides

and Datcher Loury, 2004). But the patterns revealed by our data are hard to reconcile

with these models, and emphasize the importance of social networks that foster repeated

cooperation and community interaction.
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Figures

Figure 1: Schematic diagrams of the social networks of three migrants

Notes: Each of the blue circles (A, B, C) represents a different individual considering migrating from their
home to a new destination. Each individual has exactly three contacts in the home district (grey circles
below the dashed line) and two contacts in the destination district (green circles above the dashed line). The
social network of these three individuals is denoted by G1, G2, and G3.
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Figure 2: The social network of a single migrant

Notes: Diagram shows the social network, as inferred from phone records, of a single migrant i. Nodes
represent individuals; edges indicate that two individuals communicated in the month prior to i’s migration.
Direct contacts of i are shown in blue (for people i’s home district), red (for people in i’s destination district),
and solid grey (for people in other districts). Small hollow circles indicate i’s “friends of friends,” i.e., people
who are not direct contacts of i, but who are direct contacts of i’s contacts. All individuals within two hops
of i are shown. Nodes are spaced using the force-directed algorithm described in Hu (2005).
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Figure 3: Location of all mobile phone towers in Rwanda, circa 2008

Notes: Black circles indicate cell tower locations. Black lines represent district borders. Green lines show
the voronoi polygons roughly divide the country into the coverage region of each tower.
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Figure 4: Geographic network structure before and after migration – migrants only

Notes: Figure shows, for a random sample of 10,000 migrants, the average percentage of the migrant’s social
network in the home and destination districts, in each of the 12 months before and 6 months after migration.
Dashed vertical line indicates the date of migration.

Figure 5: Migration and degree centrality (number of unique contacts in network)

(a) Degree Centrality at Destination (b) Degree Centrality at Home

Notes: Lower histograms indicate the unconditional degree distribution, i.e., the number of individual-month
observations for each degree centrality (i.e., the number of unique contacts) in the (a) destination network
and (b) home network. The upper figure shows, at each level of degree centrality (in month t − 2), the
average migration rate (in month t). Error bars indicate 95% confidence intervals, using the Wilson Score
interval for binomial proportions.
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Figure 6: Migration and network “interconnectedness” (friends with common support)

(a) Network support at destination (b) Network support at destination, by degree

(c) Network support at home (d) Network support at home, by degree

Notes: Network support indicates the fraction of contacts supported by a common contact (see Section 2.1).
In all figures, the lower histogram shows the unconditional distribution of the listed variable. Figures in the
left column (a and c) show the average migration rate for different levels of network support. Figures in the
right column show the βk values estimated with model 5, i.e., the correlation between migration and support
for individuals with different sized networks (network degree) after conditioning on fixed effects. Top row
(Figures a and b) characterizes the destination network; bottom row (Figures c and d) characterizes the
home network. Error bars for a and c indicate 95% confidence intervals, using the Wilson Score interval
for binomial proportions. Error bars for b and d indicate 95% confidence intervals, two-way clustered by
individual and by home-destination-month. Coefficients and standard errors on b and d are multiplied by
1000 to make figures legible.
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Figure 7: Relationship between migration and “extensiveness” (unique friends of friends)

(a) Friends of friends at destination (b) Friends of friends at destination, by degree

(c) Friends of friends at home (d) Friends of friends at home, by degree

Notes: Main figures in the left column (a and c) show the average migration rate for people with different
numbers of unique friends of friends. Figures in the right column show the βk values estimated with model 5,
i.e., the correlation between migration and unique friends of friends for individuals with different numbers of
friends, after conditioning on fixed effects. Top row (Figures a and b) characterizes the destination network;
bottom row (Figures c and d) characterizes the home network. Lower histograms show the unconditional
distribution of the independent variable. Error bars for a and c indicate 95% confidence intervals, using the
Wilson Score interval for binomial proportions. Error bars for b and d indicate 95% confidence intervals,
two-way clustered by individual and by home-destination-month. Coefficients and standard errors on b and
d are multiplied by 1000 to make figures legible.

46



Figure 8: The role of (higher order) strong and weak ties in a migrant’s network

Notes: Thick edges represent “strong” ties and thin edges represent “weak ties” The +/− signs summarize
the effect that j has on i’s likelihood of migration, based on the coefficients along the diagonal of Tables A9
and A10.

47



Tables

Table 1: Summary statistics of mobile phone metadata

(1) (2)

In a single month Over two years

(Jan 2008) (Jul 2006 - Jun 2008)

Number of unique individuals 432,642 793,791

Number of CDR transactions 50,738,365 868,709,410

Number of migrations 21,182 263,208

Number of rural-to-rural migrations 11,316 130,009

Number of rural-to-urban migrations 4,908 66,935

Number of urban-to-rural migrations 4,958 66,264

Notes: Migration statistics calculated from Rwandan mobile phone data. Column (1) is based
on data from a single month; column (2) includes two years of data, potentially counting each
individual more than once. “Migrations” occur when an individual remains in one district for 2
consecutive months and then remains in a different districts for the next 2 consecutive months. We
denote as urban the three districts in the capital of Kigali; the remaining districts are considered
rural.
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Table 2: Migration and social network structure - linear model

(1) (2) (3) (4)

Panel A: Destination network characteristics

Degree (network size) 3.6547∗∗∗

(0.0630)

% Friends with common support 1.4813∗∗∗ 1.4808∗∗∗

(0.1431) (0.1435)

Unique friends of friends −0.0005 −0.0002

(0.0035) (0.0035)

Observations 9,889,981 9,889,981 9,889,981 9,889,981

R2 0.1851 0.1853 0.1853 0.1853

Panel B: Home network characteristics

Degree (network size) −0.3985∗∗∗

(0.0145)

% Friends with common support −0.3467 −0.5710

(0.3838) (0.3800)

Unique friends of friends −0.0089∗∗∗ −0.0089∗∗∗

(0.0013) (0.0013)

Observations 9,889,981 9,889,981 9,889,981 9,889,981

R2 0.1743 0.1751 0.1751 0.1751

Degree fixed effects No Yes Yes Yes

Individual fixed effects Yes Yes Yes Yes

Home*Destination*Month F.E. Yes Yes Yes Yes

Notes: Each observation corresponds to an individual-month-destination tuple. Each column indicates
a separate regression of a binary variable indicating 1 if an individual i migrated from home district h
to destination district d in month t. Panel A and Panel B represent separate regressions. Coefficients in
Panel B indicate how the probability of leaving home changes as the home network changes (i.e., negative
coefficients indicate i is less likely to leave as the variable increases). Social network characteristics
calculated in month t − 2. Observations are included for all individual-months where the individual is
classified as a migrant or a non-migrant, and for all individual-month-destinations where degree, support,
and friends-of-friends are observed both at home and in the destination. Standard errors are two-way
clustered by individual and by home-destination-month. Coefficients and standard errors are multiplied
by 1000 to make the tables more readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 3: Jointly estimated effects of home and destination network structure - linear model

(1) (2) (3)

Destination Degree (network size) 4.8033∗∗∗ 3.7637∗∗∗

(0.1424) (0.0946)

Destination % friends with support 3.7855∗∗∗ 1.7164∗∗∗ 1.0618∗∗∗

(0.1975) (0.1485) (0.1424)

Destination friends of friends −0.0324∗∗∗ −0.0059 −0.0001

(0.0055) (0.0037) (0.0035)

Home Degree (network size) −0.7377∗∗∗ −0.5089∗∗∗

(0.0223) (0.0259)

Home % friends with support 8.1299∗∗∗ −6.1902∗∗∗ 0.2216

(0.4279) (0.3942) (0.3755)

Home friends of friends 0.0113∗∗∗ 0.0059∗∗∗ −0.0035∗∗∗

(0.0008) (0.0012) (0.0012)

Observations 9,889,981 9,889,981 9,889,981

R2 0.0214 0.1859 0.1869

Degree fixed effects No No Yes

Home*Destination*Month fixed effects No Yes Yes

Individual fixed effects No Yes Yes

Notes: Each observation corresponds to an individual-month-destination tuple. Each column
indicates a separate regression of a binary variable indicating 1 if an individual i migrated from
home district h to destination district d in month t. Coefficients on home network characteristics
indicate how the probability of leaving home changes as the home network changes (i.e., negative
coefficients indicate i is less likely to leave as the variable increases). Social network characteristics
calculated in month t−2. Observations are included for all individual-months where the individual
is classified as a migrant or a non-migrant, and for all individual-month-destinations where degree,
support, and friends-of-friends are observed both at home and in the destination. Standard errors
are two-way clustered by individual and by home-destination-month. Coefficients and standard
errors are multiplied by 1000 to make the tables more readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 4: Effects of home & destination network structure - conditional logit results

(1) (2) (3)

Destination Degree (network size) 171.57∗∗∗ 224.46∗∗∗

(1.71) (1.75)

Destination % friends with support 2549.03∗∗∗ 2091.76∗∗∗ 189.14∗∗∗

(8.64) (9.17) (8.88)

Destination friends of friends -1.21∗∗∗ -4.05∗∗∗ -0.38∗∗∗

(0.06) (0.06) (0.04)

Home Degree (network size) 28.09∗∗∗ 46.09∗∗∗

(0.57) (0.63)

Home % friends with support 504.28∗∗∗ 478.95∗∗∗ -16.89∗

(9.17) (9.16) (9.30)

Home friends of friends 0.46∗∗∗ -0.33∗∗∗ 0.20∗∗

(0.02) (0.02) (0.02)

Home district 5.93∗∗∗

(0.01)

Observations 9,838,431 9,838,431 9,838,431

Pseudo R2 0.71 0.71 0.72

Degree fixed effects No No Yes

Destination*Month fixed effects No Yes Yes

Individual*Month fixed effects Yes Yes Yes

Notes: Each observation corresponds to an individual-month-district tuple. Each column
indicates a separate regression of a binary variable indicating 1 if an individual i chose to
live in district d in month t. Results are estimated using a conditional logit model, using
social network characteristics of the location calculated in month t− 2. “Home District”
is a binary variable indicating whether the destination choice in t is i’s home in t − 1.
Different from the linear model, coefficients on home network characteristics indicate how
the probability of choosing the home district in t changes as the home network changes
(i.e., positive coefficients indicate the individual is more likely to stay at home as the
variable increases). Degree fixed effects, as well as Destination*Month fixed effects, are
interacted with the Home District fixed effect. See discussion in Section 3. Coefficients
and standard errors are multiplied by 1000 to make the tables more readable. Standard
errors are clustered by individual. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Appendices - For Online Publication

A1 Model and structural estimation

A1.1 A model of social capital and migration

We develop a model that links social network structure (in both the home and destination) to

subsequent migration decisions. Formally, we say that an individual i receives social capital,

or utility for short, ui(G) from social network G. In deciding whether or not to migrate, the

individual weighs the utility of her home network Gh against the utility of the network Gd

in the potential destination, and migrates if the difference is greater than an idiosyncratic

cost εi that can reflect, among other things, wage differentials and i’s idiosyncratic costs of

migrating.

ui(G
d) > ui(G

h) + εi. (6)

How people derive utility from their social networks — and equivalently, how we parame-

terize ui(G) — is not known ex ante. The network theory literature links this network-based

utility to the topological structure of the underlying network (i.e., to the configuration of

connections between nodes in the network). Jackson (2020) summarizes this work, and pro-

vides a taxonomy of social capital in networks. We focus on two types of social capital that

prior studies have emphasized in the decision to migrate: information capital and cooperation

capital.

A1.1.1 Information capital: competition and ‘extensiveness’

A robust theoretical and empirical literature suggests that the value of a social network

stems, at least in part, from its ability to efficiently transmit information (see footnote 8).

We build on recent efforts by Banerjee et al. (2013) to model this information capital as

an information sharing process with possible loss of information. It is worth noting that

Banerjee et al. (2013) study a seeding process in which an agent is injected with one unit

of information, and this agent’s diffusion centrality measures the impact of his information

to the network. We study a receiving process in which each agent is initially endowed with
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one piece of information. The nature of information could be about job openings, the work

environment, compensation, and so on. We seek to measure how much information an agent

could receive from the network. Using the same information sharing process as Banerjee et al.

(2013), we will show that the (proxy) measure we seek turns out to be diffusion centrality,

because the flow of information is symmetric.34

In this model, a population of N agents, N = {1, . . . , n}, are connected in an undirected

network. Let G be the adjacency matrix of the network: Gij = 1 if i and j are connected

and otherwise Gij = 0, including Gii = 0. Denote agent i’s neighbors as Ni = {j : Gij = 1},

and agent i’s degree as di = |Ni|, which is the number of his or her neighbors in Ni. Agents

meet with their neighbors repeatedly, and when they meet at period t, nodes receiving the

information at t− 1 transmit it to their neighbors with probability q ∈ (0, 1).

In this benchmark model of information sharing, more extensive networks — where an

individual has a large number of short-distance indirect neighbors — provide additional

utility. We extend this model by allowing for the possibility that neighbors might compete

for the attention of their common neighbor. This is motivated by our earlier observation

that more extensive destination networks are not positively correlated with migration, and

with the evidence that suggests possible rivalry for attention (see Section 4.3).

We model the source of competition for attention as costly socializing with neighbors, so

when an agent has more neighbors, he or she may spend less time with each neighbor. For-

mally, let cQω be the cost of spending Q amount of time on communicating with neighbors.

We assume each agent does not possess additional information about neighbors (such as their

degrees), so each agent evenly distributes the total amount of time Q to her d neighbors, that

is, she spends q = Q/d amount of time with each neighbor. Her utility from communicating

with neighbors is given by d · v(Q/d)β − cQω, in which she receives a value of v(Q/d)β from

spending Q/d amount of time with each neighbor, and the total cost of spending time Q is

cQω. We assume the cost is convex in time ω ≥ 1, the value is concave in time β ≤ 1, and

they cannot be linear at the same time ω > β. The agent’s maximization problem becomes

max
Q

dv(Q/d)β − cQω. (7)

34Our (proxy) measure counts the sum of expected number of times an agent hears about each piece of
information, similar to Banerjee et al. (2013).
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To maximize her utility, the agent’s optimal time per neighbor is

Q/d =
1

dλ

(

βv

ωc

) 1

ω−β

, where λ =
ω − 1

ω − β
∈ [0, 1]. (8)

Notice that if the cost is linear (ω = 1), then the marginal cost of communicating with one

neighbor does not increase when the agent has more other neighbors. Thus, the optimal

time per neighbor is independent of her degree: λ = 0. On the other hand, if the value is

linear (β = 1), time with neighbors are perfect substitutes. Then, the total amount of time

Q is independent of her degree, which is then evenly split among neighbors: λ = 1.

Motivated by this simple exercise, we let the interaction between each pair of linked

agents ij depend on their degrees. In particular, let the frequency of their interaction be

discounted by 1
dλi d

λ
j

due to possible competition for attention. During information sharing,

each agent initially has one unit of information. In each period from period 1 up to period

T , each agent i shares 1
dλi d

λ
j

q fraction of her current information to each neighbor j. Notice

that q < 1 is the original information sharing discount in Banerjee et al. (2013) that is due to

loss of information. Then, agent i’s information capital is a sum of all the information that

she can receive from the network. The vector of agents’ information capital is the modified

diffusion centrality vector, modified to include possible competition for attention. Then,

DC(G; q, λ, T ) ≡
T
∑

t=1

(qG̃)t · 1, and ∀ij, G̃ij =
1

dλi d
λ
j

Gij. (9)

When λ = 0, this is the original diffusion centrality, which assumes that in each period

information is shared with probability q and information is useful if heard within T periods.

When λ > 0, there is a tradeoff between the positive discounted utility from indirect neigh-

bors and a negative effect due to competition with them for direct neighbors’ attention. We

say the distance between two agents is 2, if they are not connected but share a common

neighbor. To highlight the tradeoff, we compare an agent’s information capital with and

without a distance-2 neighbor. Let G\{k} be the resulting network matrix removing its kth

row and kth column.

Proposition 1. Consider T = 2. For any agent i and any of her distance-2 neighbors k,

there exists a threshold λik ∈ (0, 1) such that when λ < λik, agent i’s information capital is

higher in network G than that in G \ {k}, and when λ > λik, the comparison is reverse.

All proofs are in Appendix A2. This result shows that when λ is small, having more

neighbors of neighbors increases one’s information capital, whereas when λ is large (i.e.,
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close to one), having more indirect neighbors decreases one’s information capital. Thus, λ

allows for extensive networks to be either beneficial or harmful.

A1.1.2 Cooperation capital: support and ‘interconnectedness’

Social networks also facilitate interactions that benefit from community cooperation and

enforcement, such as risk sharing and social insurance. We model this dynamic following the

setup of Ali and Miller (2016), which highlights the importance of supported relationships,

where a link is supported if the two nodes of the link share at least one common neighbor

(see also Jackson, Rodriguez-Barraquer and Tan (2012) and Miller and Tan (2018)).

As before, a population of N players are connected in an undirected network G, with

ij ∈ G and ji ∈ G if agent i and j are connected (we abuse the notation of G slightly, which

differs from the matrix format in the information model). Each pair of connected agents,

ij ∈ G, is engaged in a partnership ij that meets at random times generated by a Poisson

process of rate δ > 0. When they meet, instead of sharing information, agent i and j now

choose their effort levels aij, aji in [0,∞) as their contributions to a joint project.35 Player i’s

stage game payoff function when partnership ij meets is b(aji) − c(aij), where b(aji) is the

benefit from her partner j’s effort and c(aij) is the cost she incurs from her own effort. We

normalize the net value of effort a as b(a) − c(a) = a, and assume the cost function c is a

smooth function satisfying c(0) = 0 and the following assumption.

Assumption 1. The cost of effort c is strictly increasing and strictly convex, with c(0) =

c′(0) = 0 and lima→∞ c′(a) = ∞. The “relative cost” c(a)/a is strictly increasing.

Strict convexity with the limit condition guarantees that in equilibrium effort is bounded.

Increasing relative cost means a player requires proportionally stronger incentives to exert

higher effort. All players share a common discount rate r > 0, and the game proceeds over

continuous time t ∈ [0,∞).

As has been documented in several different real-world contexts, we assume agents have

only local knowledge of the network. Specifically, we assume each agent only observes her

local neighborhood, including her neighbors, and the links among these neighbors (in addi-

tional to her own links). To be precise, it is common knowledge that agent i observes each

j ∈ gi ≡ {i} ∪ Ni, and all links in Gi ≡ {jk : j, k ∈ gi}. In addition, we consider local

monitoring, such that each agent learns about her neighbors’ deviation (shirking behavior),

35The variable-stakes formulation is adopted from Ghosh and Ray (1996) and Kranton (1996).
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and this information travels instantly.36

To begin, we seek to minimize contagion of deviation to the rest of the society off the

equilibrium path, which follows from Jackson, Rodriguez-Barraquer and Tan (2012).

Definition 1. A strategy profile is robust if an agent’s deviation only affects partnerships

involving herself and between her neighbors.

Our first result shows that high levels of cooperation can be sustained in a robust manner,

with agents needing only local information about the network and other agents’ behavior.

Proposition 2. For any network G, there exists a robust equilibrium of repeated cooperation

that maximizes each agent’s utility subject to agents’ local knowledge of the network.

Intuitively, each partnership ij uses the maximal level of effort subject to their shared

common knowledge of the network. This maximal level of effort depends on the level of

efforts i and j can sustain with each of their common neighbors k, which in turn depends

on the level of efforts {i, j, k} can sustain with their common neighbors l, and so on. Thus,

this problem can be solved inductively, starting from the effort level of the largest clique(s)

within gij = gi ∩ gj, which always exists because the population is finite.

However, the optimal equilibrium in Proposition 2 could demand a high cognitive ability

and a lot of computational capacity to solve, because one needs to solve (interdependent)

effort levels for all subsets of neighbors in her local network. To address this concern, we

instead focus on a simple equilibrium strategy profile that maintains the desired properties

and sustains high levels of cooperation from the network enforcement.

To do so, we introduce two benchmark cooperation levels. The first one is bilateral

cooperation, the maximal cooperation attainable between two partners without the aid of

community enforcement.

Bilateral cooperation Consider a strategy profile in which, on the path of play, each

agent of the partners exerts effort level a if each has done so in the past; otherwise, each

exerts zero effort. The equilibrium path incentive constraints are:

b(a) ≤ a+

∫ ∞

0

e−rtδadt. (10)

36The local monitoring is stronger than the private monitoring in Ali and Miller (2016). It allows us
to characterize the optimal equilibrium for any network under only local knowledge of the network, the
counterpart of which is unknown with private monitoring (to the best of our knowledge), with the exception
that Ali and Miller (2016) find the optimal equilibrium when the network is a triangle.
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The bilateral cooperation level aB is the effort level that binds the incentive constraint. Since

the grim trigger punishment is a minmax punishment and each partner’s effort relaxes the

other partner’s incentive constraint, these are the maximum efforts that can be supported

by any stationary equilibrium that does not involve community enforcement.

Triangular cooperation Consider a triangle i, j, k and a strategy profile in which each of

them exerts effort level a if each has done so in the past; otherwise, each exerts zero effort.

b(a) ≤ a+ 2

∫ ∞

0

e−rtδadt. (11)

The incentive constraint is binding at effort level aT . Notice that the future value of coop-

eration is higher in a triangle because there are two ongoing partnerships for each agent, so

it can sustain higher level of efforts aT > aB and everyone gets a strictly higher utility.

We characterize a particularly simple equilibrium strategy profile that further highlights

the value of supported links. Recall that a link ij is supported if there exists k such that

ik ∈ G and jk ∈ G; i.e., if i and j have at least one common friend.

Corollary 1. There exists a robust equilibrium in which any pair of connected agents

cooperate on aT if the link is supported, and on aB otherwise.

As the triangular level of effort can be sustained by three fully-connected agents, this

strategy profile is robust. For example, consider a triangle ijk plus a link jk′. Even if k′ has

shirked on j, which reduces the value j gets from the partnership jk′, it does not damage

j’s incentive to cooperate in the triangle ijk because it can sustain aT by itself.

A1.2 Complete model

We now return to the migration decision. In equation (12),

ui = U(uI
i , u

C
i ), (12)

we assume that i’s utility from a network contains information capital and cooperation

capital (uI
i and uC

i ); here, we further assume that the utility can be expressed as a linear

combination of these two capitals. This stylized formulation is not meant to imply that uI

and uC are orthogonal or that other aspects of the network do not weigh in the decision

to migrate. Rather, this linear combination is intended to provide a simple benchmark

that contrasts two archetypical properties of network structure, which we can also estimate
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with our data. Appendix A2.1 develops a more general model of network utility, based on

a network game approach, which allows for more complex interactions among agents (for

instance that an individual’s utility may be affected by her position in the global network

as well as her local network structure).37 Appendix A2.2.2 shows that similar results obtain

when we consider a log-linear (Cobb-Douglas) utility function.

As outlined in Section A1.1.1, we say that agent i’s information capital is proportional

to their modified diffusion centrality DCi(q, λ, T ), which is the i-th element of the vector in

(9). We derive i’s cooperation capital from Corollary 1 in Section A1.1.2, which implies that

supported links are more valuable than unsupported links:

uC
i = u1d

NS
i + u2d

S
i , (13)

where dNS
i is the number of i’s unsupported links, dSi is the number of i’s supported links,

u1 is the utility of cooperating on an unsupported link, and u2 is the utility of cooperation

on a supported link.

The overall utility is thus

ui = u0DCi(q, λ, T ) + u1d
NS
i + u2d

S
i . (14)

We will use this model to contrast the value of information capital against the value of

cooperation capital, so we replace the parameters (u0, u1, u2) by (πI , πC , α) and rewrite the

overall utility:

ui = πIDCi(q, λ, T ) + πC
(

di + αdSi
)

. (15)

Substituting (15) into the original migration decision (6), we have

πI,dDCi(G
d; q, λ, T ) + πC,d

(

di(G
d) + αddSi (G

d)
)

> πI,hDCi(G
h; q, λ, T ) + πC,h

(

di(G
h) + αhdSi (G

h)
)

+ εi. (16)

Notice that we allow agents to have different weights (πI,d, πC,d, πI,h, πC,h) for the home

37The network game approach follows in the tradition of Ballester, Calvó-Armengol and Zenou (2006),
who use a network game to identify the key player, and König et al. (2017), who study strategic alliances and
conflict. This approach is formally attractive, but since each agent’s utility depends on their position and
the entire network structure, it could not be realistically computed on our data. (As a point of comparison,
calibration of the far simpler model (12) takes several days to complete, even after being parallelized across
a compute cluster with 96 cores). See also Guiteras, Levinsohn and Mobarak (2019) for a related structural
approach to dealing with network inter-dependencies.
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and destination networks, because it is possible that the relative value of information and

cooperation is different in a home network than in a destination network. For the same

reason, we allow α to differ between home and destination networks. However, we assume

(q, λ, T ) are the same for home and destination networks, because they capture properties of

the network that are common across agents and over which the agent has no direct control.38

A1.3 Model parameterization

We use the migration decisions made by several hundred thousand migrants over a 4.5-year

period to estimate the parameters of model (16). The estimation proceeds in two steps. First,

we draw a balanced sample of migrants and non-migrants by selecting, for every migrant who

moves from h to d in month t, a non-migrant who lived in h in month t, had ≥ 1 contacts in

d, but remained in h after t. This provides a total sample of roughly 270,000 migrants and

non-migrants.

Second, we use simulation to identify the set of parameters that maximize the likelihood

of generating the migration decisions observed in the data. The structural parameters of

primary interest are λ, which we interpret as a measure of the competition or rivalry in

information transmission; (αh, αd), the added value of a supported link, above and beyond

the value of an unsupported link at home and in the destination; and the scaling coefficients

(πI,d, πC,d, πI,h, πC,h), which together indicate the relative importance of information capital

and cooperation capital at home and in the destination. We normalize πC,h = 1, and

follow Banerjee et al. (2013) by setting q equal to the inverse of the first eigenvalue of the

adjacency matrix, µ1(G), and T = 3.39 Since a very large number of combinations of possible

parameters exist, we use an iterative grid-search maximization strategy where we initially

specify a large set of values for each parameters, then focus and expand the search around

local maxima.40

Estimation appears to be well-behaved. For instance, Figure A12 shows the home and

38In particular, the ‘destination’ network of a given migrant is actually the ‘home’ network for all of the
contacts that live in that destination.

39When we treat q as a free parameter and estimate it via MLE, the likelihood-maximizing value of q is
very close to 1/µ1(G). Banerjee et al. (2013) show that this approach to measuring diffusion centrality closely
approximates a structural property of “communication centrality.” However, we cannot directly estimate
this latter property on our empirical network, which contains hundreds of thousands of nodes and tens of
millions of edges.

40Specifically, for each possible set of parameters < λ,αd, αh, πI,d, πC,d, πI,h >, we calculate the utility of
the home and destination network for each migrant, and the change in utility after migration. If the change
in utility of migration is positive, we predict that individual would migrate. We choose the set of parameters
that minimizes the number of incorrect predictions.
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destination utility values for all 270,000 individuals, using the parameterized version of

model (16). Most of the true migrants (blue dots) have a predicted destination utility that

exceeds their home utility; most of the true non-migrants (red dots) have a higher home

utility. In aggregate, the calibrated model correctly classifies roughly 70% of the migration

events.

To provide more intuition for the model estimation process, Figure A9 shows the esti-

mation plots for λ; similar plots for the remaining five parameters are shown in Figure A11.

To produce these figures, we take all possible combinations of 6 parameters, resulting in

roughly 50,000 different parameter vectors. We then simulate the migration decisions of the

270,000 migrants and non-migrants using model (16), and calculate the percentage of correct

classifications. The figures show the the marginal distributions over a single parameter of the

accuracy for the top percentile of parameter vectors. In most cases, the likelihood function

is concave around the global maximum.

The structural model is largely being identified by the same variation that drives the

reduced-form results. For instance, 97.5% of the variation in the total simulated utility of

the destination network can be explained by the three main measures of network structure

used in Section 4.41 Moreover, when we take the simulated migration decisions M̂ihdt from

the parameterized structural model, and estimate the equivalent of model (3) with M̂ihdt as

the dependent variable, the regression results, presented in Table A17, are qualitatively the

same as the regression results using the actual migration decision Mihdt (Table 2). The only

notable difference is the effect of unique friends of friends in the destination network, which

becomes significantly negative in Table A17 and was insignificant in Table 2. This shows

that when the rivalry parameter λ is optimally chosen for the structural model, the average

effect of one’s second-neighborhood becomes negative.

A1.4 Parameterization results

Estimation of the model yields several results. First, we find an optimal value of the rivalry

coefficient at λ = 0.5, as shown in Figure A9. This suggests a significant departure from

the benchmark information diffusion model of Banerjee et al. (2013): having friends who

have many friends can actually reduce the utility that the agent receives from the network.

The parameterized value of 0.5 implies that the probability of people sharing information

41Specifically, we regress the total simulated utility in the destination network, using the parameterized
structural model, on three ‘reduced-form’ properties of the individual’s social network: the destination
degree centrality, the number of unique destination friends of friends, and the destination network support
(see Section 2.1 for definitions). In this linear regression (no fixed effects), R2 = 0.975.
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with a neighbor is roughly inversely proportional to the (square root of the) size of their

social networks. For instance, revisiting individuals A and C from Figure 1 (and assuming

a two-period transmission model), with the parameterized λ = 0.5, we expect that A would

receive 1.17 times the information capital as C. By contrast, the benchmark model with

λ = 0 would imply that A would receive slightly less (0.99 times) information capital than

C.

Second, using the information diffusion measure with the optimally parameterized rivalry

coefficient, we find that the total utility from uI
i (loosely, the ‘information capital’) and the

total utility from uC
i (loosely, the ‘cooperation capital’) contribute relatively evenly to the

agent’s total utility from the network. This can be seen most clearly in Figure A10, which

shows the distribution of predicted utility from uI
i and uC

i for each of the individuals used to

estimate the simulation. The bulk of this distribution lies around the 45-degree line, which

is where uI
i = uC

i . This result is perhaps surprising given the reduced-form results presented

in Section 4, which suggest that friends of friends in the destination have an insignificant (or

negative) effect on the migration decision. However, a critical difference between the reduced

form and structural results is that the structural results allow for rivalry in information

transmission. To further confirm that it is the rivalry parameter drives this difference, we

reestimate a version of model (16) where the rivalry coefficient is fixed at λ = 0. In other

words, we use the original diffusion centrality (without λ) to measure the information capital

and redo the whole simulation to identify the likelihood-maximizing set of parameters. We

find that information capital (as the original diffusion centrality) contributes very little to

total network utility; as shown in Figure A13, the bulk of the distribution lies far below the

45-degree line, where uI
i < uC

i .

Third, and consistent with previous results, we find that supported links are valued more

than unsupported links. This can be observed in the calibration plots for αD and αH in

Figure A11. In particular, αd = 5 implies that one supported link in the destination is six

times as valuable as an unsupported link in the destination, and similarly, αh = 1 implies

that one supported link at home is twice as valuable as an unsupported link at home.

Taken together, the structural estimates provide a micro-founded validation of the reduced-

form results described earlier. This is an important step, since the reduced form results are

based on statistical properties of networks that are correlated in complex ways, which cannot

be easily accounted for in a regression specification. The model parameterization also pro-

vides independent support for the presence of some degree of rivalry in information diffusion

— a possibility that was suggested by the heterogeneity discussed in Section 4.3, but only
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directly tested through structural estimation.

As a final step, Appendix A2.2 examines the robustness of the parameterization results.

In particular, we allow for the migration decision to include an average migration cost τ ,

which acts as a linear threshold that is constant across people, in addition to the idiosyncratic

error that varies with each individual:

ui(G
d) > ui(G

h) + τ + εi. (17)

Separately, instead of the linear form of (16), we consider a Cobb-Douglas utility function

which implies a log-linear combination of information capital and cooperation capital. Equa-

tion (16) becomes

πI,d logDCi(G
d; q, λ, T ) + πC,d log

(

di(G
d) + αddSi (G

d)
)

> πI,h logDCi(G
h; q, λ, T ) + πC,h log

(

di(G
h) + αhdSi (G

h)
)

+ εi. (18)

Results in Appendix A2.2 show that the key qualitative results persist under these alternative

specifications of model (16).

A1.5 Proofs

Proof of Proposition 1: Consider any agent i and any of her distance-2 neighbors k, and

let G′ = G \ {k}. To show the existence of such threshold λik, it is sufficient to show the

following three parts are true. First, when λ = 0, agent i’s diffusion centrality is higher

in network G than that in network G′. This is straight forward, because when there is no

competition among neighbors, distance-2 neighbors always increase the diffusion centrality

which is a sum of information one gets from her neighbors and distance-2 neighbors. Second,

when λ = 1, agent i’s diffusion centrality is lower in network G than that in network G\{k}.

Third, the difference in diffusion centrality for any given q (recall T = 2)

DCi(G;λ, q)−DCi(G
′;λ, q)

decreases in λ.

For the second part, let λ = 1 and let agent j be one of i’s neighbors who are connected

to agent k. Let dj be agent j’s degree in network G, which is at least two since he or she is

connected to both i and k. The information capital agent i gets from agent j in network G
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is then (recall λ = 1)

DCij(G; q) = q
1

didj
+ q2

∑

h∈Nj

1

did2jdh
.

The first term is the direct information i gets from j, and the second term is the indirect

information i gets from j’s neighbors. On the other hand, without agent k, the information

capital agent i gets from agent j is

DCij(G
′; q) = q

1

di(dj − 1)
+ q2





∑

h∈Nj\gk

1

di(dj − 1)2dh
+

∑

l∈Nj∩Nk

1

di(dj − 1)2(dl − 1)



 .

Without agent k, agent j’s degree decreases by one and so does any of j and k’s common

neighbors l. Also, agent i on longer gets indirect information from k, which is reflected as

(Nj \ gk) ∪ (Nj ∩Nk) = Nj \ {k}. We have,

DCij(G
′; q)−DCij(G; q)

≥ q

(

1

di(dj − 1)
−

1

didj

)

+ q2





∑

h∈Nj\{k}

(

1

di(dj − 1)2dh
−

1

did2jdh

)

−
1

did2jdk





≥ q

(

1

di(dj − 1)
−

1

didj

)

− q2
1

did2jdk

= q
1

di(dj − 1)dj
− q2

1

did2jdk

> 0.

This is true for all j ∈ Ni ∩ Nk. So the second part is true that when λ = 1, agent i’s

diffusion centrality in network G′ is higher.

Third, we consider the difference in agent i’s diffusion centrality from neighbor j:

DCij(G
′;λ, q)−DCij(G;λ, q)

= q

(

1

dλi (dj − 1)λ
−

1

dλi d
λ
j

)

− q2
1

dλi d
2λ
j dλk

+ q2
∑

h∈Nj\gk

(

1

dλi (dj − 1)2λdλh
−

1

dλi (dj)
2λdλh

)

+ q2
∑

l∈Nj∩Nk

(

1

dλi (dj − 1)2λ(dl − 1)λ
−

1

dλi (dj)
2λdλl

)

. (19)

Clearly, each of the four terms in (19) increases as λ increases. So we prove the third part

of the monotonicity of the difference in the two diffusion centrality.
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Proof of Proposition 2: We construct the equilibrium as follows. Consider the partnership

between i and j; the common knowledge they share about the network includes gij = gi ∩ gj

and Gij = Gi ∩Gj.

First, we identify the maximal effort for each clique with m agents.

b(a) ≤ a+ (m− 1)

∫ ∞

0

e−rtδadt,

in which b(a) is the gain from deviation and the right hand side is the payoff of each agent

from all m agent cooperating at effort a. The effort ac=m binds this inequality.

Then, we claim there exists a maximal effort for the link ij subject to their shared

common knowledge. If gij = {i, j}, then this maximal effort is ac=2, otherwise it can be

found by induction as illustrated below. From now on, we focus on the shared local network

(gij, Gij). We say a subset of agents is fully-connected if every agent in the subset is connected

to everyone else in the subset. When the largest clique(s) in (gij, Gij) has h+2 agents, then

the induction takes h steps:

• In step 1, find the largest clique(s), for example, gijk1...kh . Then assign the effort

a(kmkl|ijk1 . . . kh) = ac=h+2 to each link kmkl within the clique. That is, it is common

knowledge among agents in the clique that each link can sustain effort at least ac=h+2.

• In step 2, find all subsets of fully-connected agents containing h + 1 agents, including

i and j (this must always hold for all subsets we discuss, so omitted below). For

any of them, say gijk′
1
...k′

h−1
, assign a(k′

mk
′
l|ijk

′
1 . . . k

′
h−1) to each link k′

mk
′
l to bind the

inequality:

b(a) ≤ a+

∫ ∞

0

e−rtδ






ha+

∑

l∈gijk′
1
...k′

h−1
\{i,j,k′

1
,...,k′

h−1
}

a(il|ijk′
1 . . . k

′
h−1l)






dt.

That is, everyone in the clique uses the effort a and for other links that all of them can

observe, the effort level is determined in the previous step (step 1).

• . . .

• In step η, find all subsets of fully-connected agents containing (h+ 3− η) agents. For

any of them, say gijk′′
1
...k′′

h+1−η
, assign a(k′′

mk
′′
l |ijk

′′
1 . . . k

′′
h+1−η) to each link k′′

mk
′′
l to bind
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the inequality:

b(a) ≤ a+

∫ ∞

0

e−rtδ






(h+ 2− η)a+

∑

l∈gijk′′
1
...k′′

h+1−η
\{i,j,k′′

1
,...,k′′

h+1−η
}

a(il|ijk′′
1 . . . k

′′
h+1−ηl)






dt.

• . . .

• In step h+1, the only subset containing 2 agents and including i and j is the set {i, j}.

The effort between them (a∗ij) must bind the inequality:

b(a) ≤ a+

∫ ∞

0

e−rtδ



a+
∑

l∈gij\{i,j}

a(il|ijl)



 dt.

By construction, each effort level is the highest effort that is sustainable given the (higher-

order) common knowledge of the network. Thus, a∗ij is the maximal effort sustainable be-

tween ij subject to their shared knowledge of the network. In addition, as long as no one in

gij has deviated, i and j can sustain a∗ij. Thus, the strategy is robust.

A2 Extension and discussion of the model

A2.1 A network game approach

In the benchmark model, we assume the total utility each agent gets from the network is a

linear combination of information capital and cooperation capital as in equation (12). To

allow more complex features of network structures to influence the value an agent gets from

the social network, one possibility is to consider a network game approach.

Each agent i chooses an action ai, which could be socializing with friends, cooperating

with them or both. Let a = (a1, . . . , an) be the strategy profile. We use the matrix format

of a network G, such that Gij = Gji = 1 when i and j are connected. Let the matrix Gs be

the network of links that are supported in the baseline network G, that is Gs
ij = Gs

ji = 1 if

and only if ij is supported in G. Agent i derives the following quadratic utility, which has

been commonly-used in network games (Jackson and Zenou 2015):

ui(a, G) = πai −
a2i
2

+ φ

n
∑

j=1

Gijaiaj + α

n
∑

j=1

Gs
ijaiaj. (20)
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The first two terms πai −
a2i
2
represent a linear benefit and a quadratic cost to agent i from

choosing ai. When φ > 0, the third term φ
∑n

j=1 Gijaiaj reflects the strategic complemen-

tarity between neighbors’ actions and one’s own action.42 And the last term α > 0 reflects

the additional complementarity between supported neighbors.

We add two remarks about the utility function. First, the utility differs from a standard

network game setup due to the last term, α
∑n

j=1 G
s
ijaiaj. This is motivated by the theory

results in Section A1.1.2 and the empirical results in Section 4 that an agent may derive

additional utility from a supported neighbor. Second, if α = 0, then the equilibrium action

will be in proportion to the diffusion centrality in Section A1.1.1, DC(G; q, λ, T ) when q = φ,

λ = 0 and T → ∞. In particular, φ can be viewed as the information passing probability

q. The equilibrium action of agent i depends on the entire network structure, including

her indirect neighbors and her supported links, and thus, this network approach allows for

these network structures to jointly determine the equilibrium utility an agent gets from the

network.

Let µ1(G) be the spectral radius of matrix G, I be the identity matrix, and 1 be the

column vector of 1.

Proposition 3. If µ1(φG+αGs) < 1, the game with payoffs (20) has a unique (and interior)

Nash equilibrium in pure strategies given by:

a∗ = π(I− φG− αGs)−11. (21)

Consider the first-order necessary condition for each agent i’s action:

∂ui(a, G)

∂ai
= π − ai + φ

n
∑

j=1

Gijaj + α

n
∑

j=1

Gs
ijaj = 0.

This leads to

a∗i = π + φ
n
∑

j=1

Gija
∗
j + α

n
∑

j=1

Gs
ija

∗
j . (22)

In the matrix form: a∗ = π1+ φGa∗ + αGsa∗, which leads to the solution in (21).

A simple way to prove this solution is indeed the unique (and interior) Nash equilibrium,

as noted for example by Bramoullé, Kranton and D’amours (2014), is to observe that this

42While it is unlikely in our setup, φ could be negative in some network games, which then reflects the
substitution between neighbors’ actions and one’s own action.
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game is a potential game (as defined by Monderer and Shapley 1996) with potential function:

P (a, G, φ) =
n
∑

i=1

ui(a, G)−
φ

2

n
∑

i=1

n
∑

j=1

Gijaiaj −
α

2

n
∑

i=1

n
∑

j=1

Gs
ijaiaj.

We omit the details of the analogous proof, which can be found in Bramoullé, Kranton and

D’amours (2014) and Jackson and Zenou (2015).

In the equilibrium, the utility of agent i is given by

ui(a
∗, G) = πa∗i −

a∗2i
2

+ φ

n
∑

j=1

Gija
∗
i a

∗
j + α

n
∑

j=1

Gs
ija

∗
i a

∗
j

= a∗i

(

π + φ
n
∑

j=1

Gija
∗
j + α

n
∑

j=1

Gs
ija

∗
j

)

−
a∗2i
2
.

By equation (22), ui(a
∗, G) = (a∗i )

2/2, which by equation (21) depends on (π, φ, α,G). So in

this way, we can estimate how an agent’s utility depends on the interaction with neighbors

φ, the added value of a supported link α, and his or her position in the network G.

More generally, the network game can be enriched to capture the possibilities of com-

petition with indirect neighbors, as we modeled in Section A1.1.1. For example, Ballester,

Calvó-Armengol and Zenou (2006) consider a global congestion effect by adding the term

−λai
∑n

j=1 aj to each agent i’s utility. Using the corresponding equilibrium utility with this

congestion λ, one could also estimate the rivalry or competition with indirect neighbors.

A2.2 Robustness of model calibration

Our benchmark model assumes that an individual will migrate if the total utility of the

destination network exceeds the total utility of the home network (equation 6), and assumes

that the total utility an agent i receives from an arbitrary network G can be expressed as

a linear combination of the information capital and cooperation capital of G (equation 12).

This highly stylized formulation is intended to contrast, as transparently as possible, what

the literature has emphasized are the two main mechanisms through which social networks

provide utility. Here, we explore alternative formulations of models (6) and (12), to test the

robustness of the calibration results in Section A1.4.
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A2.2.1 Fixed migration costs

We first allow for the migration decision (equation 6) to include a fixed threshold (cost) τ ,

in addition to the idiosyncratic error εi:

ui(G
d) > ui(G

h) + τ + εi. (23)

Here, τ is meant to capture the possibility that all people might share a common aversion

to migrating; accounting for this shared cost might help us identify the main parameters of

interest.

When model (23) is calibrated with the data, the main observations in Section A1.4

persist. Full calibration plots for all parameters < λ, αd, αh, τ, πI,d, πC,d, πI,h > are shown in

Figure A14. Most importantly, the optimal value of the rivalry coefficient remains at λ = 0.5

(top left). Similar to the results presented in the main text, supported links are more valuable

than unsupported links (i.e., αD and αH are both greater than 0). In particular, αD is exactly

5 as in the main model, and αh decreases slightly from 1 to 0.5.

Second, the total utility from information capital and cooperation capital contribute

relatively the same amount to an agent’s total utility from the network. This can be seen

most clearly in Figure A15, The bulk of the distribution of uI
i and uC

i lies around the 45-

degree line, which is where uI
i = uC

i .

The calibration sensitivity plot for the new parameter, τ , is shown in the middle-right

panel of Figure A14. This calibration is more noisy, with the optimal calibrated threshold

at τ = −5. This is perhaps surprising, since a literal interpretation of τ is as an average

migration cost, which should be positive. However, the vast majority of agents in our sim-

ulation have considerably larger home networks than destination networks (see the bottom

panels of Figure 5); it is likely that the negative τ is offsetting the fact that in our balanced

sample home utility generally exceeds destination utility.

A2.2.2 Cobb-Douglas utility

Next, we consider a Cobb-Douglas network utility function, which can be rewritten as the

total utility being a log-linear combination of information capital and cooperation capital.

Specifically, equation (16) becomes

πI,d logDCi(G
d; q, λ, T ) + πC,d log

(

di(G
d) + αddSi (G

d)
)

> πI,h logDCi(G
h; q, λ, T ) + πC,h log

(

di(G
h) + αhdSi (G

h)
)

+ εi. (24)
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We note that the linear utility function and the Cobb-Douglas utility function describe

fundamentally different ways that agents value the network. A key difference is that the

information capital and cooperation capital are substitutable in the linear utility function,

but they are complementary in the Cobb-Douglas utility function. To get a high utility

based on the Cobb-Douglas form, an agent needs both a high information capital and a high

cooperation capital, while only one is needed based on the linear form. As a result, we want to

confirm the main takeaways are robust, although we do not expect all the parameterizations

are exactly the same.

We find that the main observations in section A1.4 persist. The log-linear model cor-

rectly predicts 68.6% of the migration decisions, which is close to, though slightly below,

the accuracy of the model in the text, which is 69.5%. The parameterization plots for

< λ, αd, αh, πI,d, πC,d, πI,h > are shown in Figure A16. As before, the optimal value of the

rivalry coefficient remains at λ = 0.5. Similarly, supported links are more valuable than

unsupported links, although the particular values differ from the main model: αd = 0.5 and

αh = 10.

Figure A17a shows the extent to which information capital and cooperation capital con-

tribute to the agent’s total utility from the network. Cooperation capital contributes roughly

twice as much as information capital, which differs from the equal contribution in the main

specification. This shows that the fact that both information capital and cooperation capital

contribute significantly to the total social capital is a robust result, but the relative weights

of the two may depend on their interactions (substitutes or complementary). It’s worth

to note that it remains the case that when λ is optimally parameterized, the information

capital contributes significantly more to total utility than when we remove the possibility for

rivalry by setting λ = 0. This contrast can be seen by comparing the left (λ = 0.5) and right

(λ = 0) panels of Figure A17. In other words, regardless of the specific utility functions, the

information capital if in the form of the original diffusion centrality does not contribute to

the social capital (relative to the cooperation capital), which further supports the finding of

rivalry in competing for neighbors’ attention.

A3 Measuring migration with mobile phone data

We use the mobile phone logs to reconstruct the migration history of each individual in three

steps.

First, we extract the timestamp and cell phone tower identifier corresponding to every
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phone call and text message made by each individual in the 4.5-year period. This creates

a set of tuples {subscriber ID, timestamp, tower ID} for each subscriber. The tower

identifier allows us to approximately resolve the location of the subscriber, to an area of

roughly 100 square meters in urban areas and several square kilometers in rural areas. The

physical locations of these towers are shown in Figure 3. We do not observe the location of

subscribers in the time between phone calls and text messages.

Next, we assign each subscriber to a “home” district in each month that she makes one

or more transactions. Our goal is to identify the location at which the individual spends the

majority of her time, and specifically, the majority of her evening hours.43 The full details of

this assignment procedure are given in Algorithm 1. To summarize, we first assign all towers

to a geographic district, of which there are 30 (we treat the three small districts that comprise

the capital of Kigali as a single district). Then, for each individual, we compute the most

frequently visited district in every hour of the entire dataset (i.e., there will be a maximum of

4.5 years * 365 days * 24 observations for each individual, though in practice most individuals

appear in only a fraction of possible hours). We then aggregate these hourly observations,

identifying the district where each individual spends the majority of hours of each night

(between 6pm and 7am). Finally, we aggregate these daily observations by identifying the

district in which the individual spent the majority of nights in each month. The end result

is a panel of individual-month districts.44 After this step, we have an unbalanced panel

indicating the home location of each individual in each month.

Finally, we use the sequence of monthly home locations to determine whether or not each

individual i migrated in each month. As in Blumenstock (2012), we say that a migration

occurs in month t + 1 if three conditions are met: (i) the individual’s home location is

observed in district d for at least k months prior to (and including) t; (ii) the home location

d′ in t + 1 is different from d; and (iii) the individual’s new home location is observed in

district d′ for at least k months after (and including) t+1. Individuals whose home location

is observed to be in d for at least k months both before and after t are considered residents,

43A simpler approach simply uses the model tower observed for each individual in a given month as the
“home” location for that person. While our later results do not change if home locations are chosen in this
manner, we prefer the algorithm described in the text, as it is less susceptible to biases induced from bursty
and irregular communication activities.

44At each level of aggregation (first across transactions within an hour, then across hours within a night,
then across nights within a month), there may not be a single most frequent district. To resolve such ties,
we use the most frequent district at the next highest level of aggregation. For instance, if individual i is
observed four times in a particular hour h, twice in district p and twice in q, we assign to ih whichever of p
or q was observed more frequently across all hours in the same night as h. If the tie persists across all hours
on that night, we look at all nights in that month. If a tie persists across all nights, we treat this individual
as missing in that particular month.
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or stayers. Individuals who do not meet these conditions are treated as “other” (and are

excluded from later analysis).45 Complete details are given in Algorithm 2.

45Individuals are treated as missing in month t if they are not assigned a home location in any of the
months {t− k, ..., t, t+ k}, for instance if they do not use their phone in that month or if there is no single
modal district for that month. Similarly, individuals are treated as missing in t if the home location changes
between t− k and t, or if the home location changes between t+ 1 and t+ k.
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A4 Algorithms

Data: < ID, datetime, location > tuples for each mobile phone interaction
Result: < ID,month, district > tuples indicating monthly modal district
Step 1 Find each subscriber’s most frequently visited tower;
→ Calculate overall daily modal districts ;
→ Calculate overall monthly modal districts ;
Step 2 calculate the hourly modal districts ;
if tie districts exist then

if overall daily modal districts can resolve then
return the district with larger occurance number;
else

if overall monthly modal districts can resolve then
return the district with larger occurance number

end

end

end

end
Step 3 calculate the daily modal districts ;
if tie districts exist then

if overall daily modal districts can resolve then
return the district with larger occurance number;
else

if overall monthly modal districts can resolve then
return the district with larger occurance number

end

end

end

end
Step 4 calculate the monthly modal districts ;
if tie districts exist then

if overall monthly modal districts can resolve then
return the district with larger occurance number;

end

end
Algorithm 1: Home location assignment
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Data: Monthly modal district for four consecutive months: D1, D2, D3, D4

Result: Migration type

if D1 == D2 AND D3 == D4 then
if D2 == D3 then

if D4 == Kigali then
migration type is urban resident

end
else

migration type is rural resident
end

end
else

if D4 == Kigali then
migration type is rural to urban

end
else

if D1 == Kigali then
migration type is urban to rural

end
else

migration type is rural to rural
end

end

end

end
else

migration type is other
end

Algorithm 2: Classifying individuals by migrant type for k=2
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A5 Appendix Figures and Tables
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Figure A1: Validation of Migration Data

(a) Destination

(b) Origin

Notes: Figure shows the count of Rwandan migrants (a) to each district and (b) from each district, according
to two independent sources of data. Red bars indicate the number of migrants inferred from the mobile phone
data, using the methods described in Section 2.2. Blue bars indicate the number of recent internal migrants
reported in the 2012 Rwandan census data (National Institute of Statistics of Rwanda, 2014).
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Figure A2: Network structure of migrants

(a) Number of contacts (b) Number of calls

Figure A3: Network structure of non-migrants

(a) Number of contacts (b) Number of calls

Notes: Top figures shows how the network connections of migrants evolves over time, in each of the 12
months before and 6 months after migration. These are similar to Figure 4, except that instead of showing
the percent of calls to each location, Figure A2a plots the number of unique contacts in each location and
Figure A2b indicates the number of phone calls to each location. Bottom figures show equivalent figures
for non-migrants, as a sort of placebo test. For non-migrants, the index month t is sampled from the same
distribution of months in which actual migrations occur.
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Figure A4: Number of friends of friends, before and after migration (migrants)

Figure A5: Percent of friends with common support, before and after migration (migrants)

Notes: Top figure shows total number of friends of friends migrants have in their home district and their
destination district, in each of the 12 months before and 6 months after migration. Bottom figure shows the
percent of the mgirants friends who have a common friend.
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Figure A6: Migration rate and degree centrality, controlling for different fixed effects

(a) No fixed effects (b) Destination district fixed effects

(c) Home-destination-month F.E.’s (d) Home-dest-month & individual F.E.’s

Notes: Each figure shows the fixed effect coefficients estimated from a regression of migration on separate
fixed effects for each possible destination network size (see Section 4.1). Figure subtitle indicates any other
fixed effects included in the specification. Error bars indicate 95% confidence intervals, two-way clustered
by individual and by home-destination-month.
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Figure A7: Relationship between migration rate and clustering

(a) Clustering at Destination (b) Clustering at Destination, by Degree

(c) Clustering at Home (d) Clustering at Home, by Degree

Notes: “Clustering” denotes the proportion of potential links between i’s friends that exist. In all figures,
the lower histogram shows the unconditional distribution of the x-variable. Top row (a and b) characterizes
the destination network; bottom row (c and d) characterizes the home network. For the left column (a
and c), the main figure indicates, at each level of weighted degree, the average migration rate. For the
left column (b and d), the main figure indicates the correlation between the migration rate and clustering,
holding degree fixed. In other words, each point represents the βk coefficient estimated from a regression
of Migrationi = αk + βkClusteringi, estimated on the population of i who have degree equal to k. Error
bars for a and c indicate 95% confidence intervals, using the Wilson Score interval for binomial proportions.
Error bars for b and d indicate 95% confidence intervals, two-way clustered by individual and by home-
destination-month. Coefficients and standard errors on b and d are multiplied by 1000 to make figures
legible.
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Figure A8: Migrants have fewer friends of friends than non-migrants

Notes: The figure focuses on all individuals who have exactly 10 unique contacts in a potential destination,
and shows the distribution of the number of unique “friends of friends” in that destination. Counterintu-
itively, migrants have fewer unique friends of friends than non-migrants.
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Figure A9: Model calibration results for λ

Notes: Figure shows the marginal effect of varying λ when calibrating Model (16). The full model has
7 parameters (λ, αd, αh, πI,d, πC,d, πI,h); roughly 50,000 different parameter combinations are tested. The
top percentile (by accuracy) of these combinations are selected. Each box and whisker plot represents the
accuracy distribution within that top percentile, for each value of λ tested.

Figure A10: Calibration results: ‘information’ and ‘cooperation’ utility

Notes: Figure shows the distribution of predicted utility from ‘information’ capital and ‘cooperation’ capital
(i.e., equation 12) for 270,000 migrants and non-migrants.
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Figure A11: Calibration results: marginal plots

Notes: Figures show the marginal effect of varying λ, αd, α
h and (πI,d, πC,d, πI,h) when calibrating Model

16. Each of roughly 50,000 different parameter combinations is tested; the top percentile of simulations are
used to generate this marginal plot.
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Figure A12: Simulated balance of home vs. destination utility

Notes: After the model is calibrated, the optimal parameters are used to calculate the total utility provided
to each individual by the home network and destination network. Each dot represents one individual’s
combination of predicted home-destination utility. Blue (red) dots above (below) the 45-degree line are
correctly classified; blue (red) dots below (above) the 45-degree line are incorrectly classified.
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Figure A13: Calibration results when λ = 0: ‘information’ and ‘cooperation’ utility

Notes: Figures show the distribution of predicted utility from ‘information’ and ‘cooperation’ (i.e., equation
12) for 270,000 migrants and non-migrants. It is calculated using the parameters selected by calibrating
Model 16 with λ fixed at zero (i.e., no information rivalry).
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Figure A14: Calibration results (with τ): marginal plots

Notes: Figures show the marginal effect of varying λ, α, τ , and π when calibrating Model (23). Each
of roughly 50,000 different parameter combinations is tested; the top percentile of simulations are used to
generate this marginal plot.
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Figure A15: Calibration results (with τ): ‘information’ and ‘cooperation’ utility

Notes: Figures show the distribution of predicted utility from ‘information’ and ‘cooperation’ (i.e., equation
12) for 270,000 migrants and non-migrants.
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Figure A16: Calibration results for log linear model: marginal plots

Notes: Figures show the marginal effect of varying λ, αd, α
h and (πI,d, πC,d, πI,h) when calibrating Model

(24). Each of roughly 50,000 different parameter combinations is tested; the top percentile of simulations
are used to generate this marginal plot.
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Figure A17: Calibration results for log linear model: ‘information’ and ‘cooperation’ utility

(a) Rivalrous information transmission (λ = 0.5) (b) Non-rival information transmission (λ = 0)

Notes: Figures show the distribution of predicted utility from ‘information’ and ‘cooperation’ (i.e., equation
12) for 270,000 migrants and non-migrants. The left figure is calculated using the parameters selected by
calibrating Model 24. For the right figure, λ is fixed at zero (i.e., no information rivalry).

88



Table A1: Migration events observed in 4.5 years of phone data

Definition of Total % Ever % Repeat migrants % Repeat migrants % Long-distance migrants % Circular

Migrant (k) Individuals (N) Migrate (to same district) (to any district) (non-adjacent districts) Migrants

1 935,806 34.565 11.171 21.923 23.181 18.457

2 680,267 21.634 1.933 8.244 13.828 5.934

3 518,156 13.960 0.405 2.893 9.216 2.007

6 263,182 5.294 0.000 0.192 3.547 0.128

Notes: Table counts number of unique individuals meeting different definitions of a “migration event.” Each row of the table defines a migration by
a different k, such that an individual is considered a migrant if she spends k consecutive months in a district d and then k consecutive months in a
different district d′ 6= d – see text for details. Repeat migrants are individuals who have migrated one or more times prior to a migration observed in
month t. Long-distance migrants are migrants who travel between non-adjacent districts. Circular migrants are migrants who have migrated from d
to h prior to being observed to migrated from h to d. The number of individual (N) varies by row, since an individual is only considered eligible as a
migrant if she is observed continuously over 2N consecutive months.
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Table A2: Migration and destination network structure - Migrants only, conditional logit

(1) (2) (3)

Degree (network size) in destination 500.24∗∗∗ 509.30∗∗∗

(3.38) (3.17)

% Friends with common support in destination 1404.31∗∗∗ 1471.87∗∗∗ 281.46∗∗∗

(13.98) (13.96) (11.61)

Unique friends of friends in destination -7.00∗∗∗ -9.70∗∗∗ -1.67∗∗∗

(0.01) (0.01) (0.07)

Observations (person-months) 260,246 251,112 251,112

Pseudo R2 0.23 0.30 0.34

Degree fixed effects No No Yes

Destination*Month fixed effects No Yes Yes

Individual*Month fixed effects Yes Yes Yes

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an
individual i migrated from home district h to destination district d in month t. Results
are estimated using a conditional logit model, using social network characteristics of the
destination network calculated in month t − 2. This specification includes observations
only for migrants in the month of migration (i.e., all possible destinations are considered in
month t for individuals who migrate in t; individuals who do not migrate in month t are
excluded from the regression). See discussion in Section A1.3. Standard errors are clustered
by individual. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A3: Heterogeneity by Migration Frequency (Repeat and First-time)

(1) (2) (3)

Migration Frequency Any Repeat First-Time

% Destination support 1.0618∗∗∗ −2.7428 1.0934∗∗∗

(0.1424) (1.8318) (0.0997)

Destination friends of friends −0.0001 0.0171 −0.0030

(0.0035) (0.0125) (0.0022)

% Home support 0.2216 3.7889 −0.7294∗∗

(0.3755) (2.6993) (0.2911)

Home friends of friends −0.0035∗∗∗ −0.0511∗∗∗ 0.0022∗∗∗

(0.0012) (0.0096) (0.0007)

Observations 9,889,981 665,780 9,224,201

R2 0.1869 0.4383 0.1986

Degree fixed effects Yes Yes Yes

Home*Destination*Month fixed effects Yes Yes Yes

Individual fixed effects Yes Yes Yes

Notes: All specifications include degree fixed effects, (home * destination * month) fixed effects,
and individual fixed effects. Repeat migrants are individuals who have migrated one or more
times from h to d prior to a h − d migration observed in month t. Standard errors are two-way
clustered by individual and by home-destination-month. Coefficients and standard errors are
multiplied by 1000 to make the tables more readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A4: Heterogeneity by Distance (Adjacent districts vs. Non-adjacent districts)

(1) (2) (3)

Migration Distance Any Short Distance Long-Distance

(adjacent districts) (non-adjacent districts)

% Destination support 1.0618∗∗∗ 1.0032∗∗∗ 1.0780∗∗∗

(0.1424) (0.2570) (0.1801)

Destination friends of friends −0.0001 0.0042 −0.0159∗∗∗

(0.0035) (0.0052) (0.0041)

% Home support 0.2216 −0.4295 0.2990

(0.3755) (0.6858) (0.4681)

Home friends of friends −0.0035∗∗∗ −0.0052∗∗ −0.0028∗∗

(0.0012) (0.0026) (0.0014)

Observations 9,889,981 3,337,184 6,552,797

R2 0.1869 0.3237 0.1972

Degree fixed effects Yes Yes Yes

Home*Destination*Month F.E. Yes Yes Yes

Individual fixed effects Yes Yes Yes

Notes: All specifications include degree fixed effects, (home * destination * month) fixed effects, and individual
fixed effects. Standard errors are two-way clustered by individual and by home-destination-month. Coefficients
and standard errors are multiplied by 1000 to make the tables more readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A5: Heterogeneity by Migration Duration (Long-term vs. Short-term)

(1) (2) (3)

Migration Distance Any Long Stay Short Stay

(> 12 months) (< 6 months)

% Destination “support” 1.0618∗∗∗ 0.2180∗∗∗ 0.8051∗∗∗

(0.1424) (0.0617) (0.0954)

Destination friends of friends −0.0001 0.0156∗∗∗ −0.0125∗∗∗

(0.0035) (0.0021) (0.0020)

% Home “support” 0.2216 0.0928 0.1442

(0.3755) (0.2149) (0.2574)

Home friends of friends −0.0035∗∗∗ −0.0068∗∗∗ 0.0007

(0.0012) (0.0007) (0.0005)

Observations 9,889,981 9,782,384 9,820,778

R2 0.1869 0.1445 0.1858

Degree fixed effects Yes Yes Yes

Home*Destination*Month fixed effects Yes Yes Yes

Individual fixed effects Yes Yes Yes

Notes: All specifications include degree fixed effects, (home * destination * month) fixed effects, and
individual fixed effects. Standard errors are two-way clustered by individual and by home-destination-
month. Coefficients and standard errors are multiplied by 1000 to make the tables more readable. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table A6: The role of strong ties and weak ties

(1) (2) (3) (4)

Destination “Weak tie” 3.6077∗∗∗ 3.7190∗∗∗ 3.6771∗∗∗ 3.7849∗∗∗

(0.0618) (0.0923) (0.0613) (0.0920)

Destination “Strong tie” 4.4319∗∗∗ 4.5117∗∗∗ 4.4074∗∗∗ 4.5034∗∗∗

(0.1218) (0.1370) (0.2906) (0.2976)

% Destination “Support” 1.8786∗∗∗ 1.8158∗∗∗

(0.1470) (0.1446)

Destination friends of friends −0.0062∗ −0.0061∗

(0.0036) (0.0036)

Home “Weak tie” −0.3855∗∗∗ −0.4813∗∗∗ −0.4042∗∗∗ −0.5021∗∗∗

(0.0144) (0.0248) (0.0145) (0.0249)

Home “Strong tie” −0.7742∗∗∗ −0.8799∗∗∗ −1.4034∗∗∗ −1.5449∗∗∗

(0.0279) (0.0345) (0.1035) (0.1045)

% Home “Support” −6.1352∗∗∗ −6.1689∗∗∗

(0.3786) (0.3799)

Home friends of friends 0.0058∗∗∗ 0.0059∗∗∗

(0.0011) (0.0011)

Observations 9,889,981 9,889,981 9,889,981 9,889,981

R2 0.1858 0.1859 0.1858 0.1859

Degree fixed effects No No No No

Home*Destination*Month FE’s Yes Yes Yes Yes

Individual fixed effects Yes Yes Yes Yes

Definition of “Strong” 90th Percentile 90th Percentile 95th Percentile 95th Percentile

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an individual i migrated from home
district h to destination district d in month t. This table disaggregates contacts at home and destination by the strength of
the relationship, where strength is defined in terms of the number of phone calls observed between the two parties. Columns
1 and 2 consider strong ties to be relationships with 5 or more phone calls (the 90th percentile of tie strength); columns 3 and
4use a threshold of 12 calls (the 95th percentile of tie strength). Standard errors are two-way clustered by individual and by
home-destination-month. Coefficients and standard errors are multiplied by 1000 to make the tables more readable. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table A7: The role of recent migrants and co-migrants

(1) (2) (3)

Destination Degree (network size) 3.7637∗∗∗ 3.6358∗∗∗ 3.6513∗∗∗

(0.0913) (0.0933) (0.0895)

% Destination “Support” 1.7164∗∗∗ 1.7326∗∗∗ 1.7847∗∗∗

(0.1434) (0.1439) (0.1436)

Destination friends of friends −0.0059 −0.0041 −0.0060∗

(0.0036) (0.0036) (0.0036)

Home Degree (network size) −0.5089∗∗∗ −0.5171∗∗∗ −0.5859∗∗∗

(0.0250) (0.0248) (0.0254)

% Home “Support” −6.1902∗∗∗ −6.1607∗∗∗ −6.3159∗∗∗

(0.3806) (0.3811) (0.3803)

Home friends of friends 0.0059∗∗∗ 0.0060∗∗∗ 0.0075∗∗∗

(0.0011) (0.0011) (0.0011)

Recent migrant friends 1.1090∗∗∗ 12.6456∗∗∗

(0.3129) (1.0365)

Observations 9,889,981 9,889,981 9,889,981

R2 0.1859 0.1859 0.1870

Degree fixed effects No No No

Home*Destination*Month fixed effects Yes Yes Yes

Individual fixed effects Yes Yes Yes

Definition of “Recent” NA Ever Last month

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an individual
i migrated from home district h to destination district d in month t. Column (1) replicates the
original result from Table 3; column (2) controls for the number of migrants that i knows, who
ever migrated from h to d prior to t; column (3) controls for the number of recent migrants that i
knows, who migrated from h to d in the month prior to t. Standard errors are two-way clustered
by individual and by home-destination-month. Coefficients and standard errors are multiplied by
1000 to make the tables more readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A8: Migration and networks, controlling for prior visits to the destination

(1) (2) (3)

Destination Degree (network size) 3.7637∗∗∗ 3.4338∗∗∗ 3.2097∗∗∗

(0.0946) (0.0906) (0.0889)

Destination % friends with support 1.7164∗∗∗ 1.1105∗∗∗ 0.8494∗∗∗

(0.1485) (0.1480) (0.1437)

Destination friends of friends −0.0059 −0.0058 −0.0041

(0.0037) (0.0037) (0.0036)

Home Degree (network size) −0.5089∗∗∗ −0.5050∗∗∗ −0.5025∗∗∗

(0.0259) (0.0258) (0.0257)

Home % friends with support −6.1902∗∗∗ −6.4460∗∗∗ −6.4846∗∗∗

(0.3942) (0.3935) (0.3936)

Home friends of friends 0.0059∗∗∗ 0.0059∗∗∗ 0.0060∗∗∗

(0.0012) (0.0012) (0.0012)

Prior visit to destination 10.5051∗∗∗

(0.3216)

Prior visit to destination (evening hours) 14.1288∗∗∗

(0.3002)

Observations 9,889,981 9,889,981 9,889,981

R2 0.1859 0.1870 0.1878

Degree fixed effects No No No

Home*Destination*Month fixed effects Yes Yes Yes

Individual fixed effects Yes Yes Yes

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an individual i
migrated from home district h to destination district d in month t. Column (1) replicates the original
result from Table 3; column (2) controls for whether i ever used their phone in d in the month prior
to t; column (3) controls for whether i ever used their phone in d during the evening hours (i.e.,
between 6pm and 7am, as a proxy for staying overnight) in the month prior to t. Standard errors are
two-way clustered by individual and by home-destination-month. Coefficients and standard errors
are multiplied by 1000 to make the tables more readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A9: Disaggregating the friend of friend effect by the strength of the 2nd-degree tie

(1) (2) (3) (4) (5) (6)

Destination friends of friends (all) 0.0004

(0.0034)

Friends of friends (strong-strong) 0.0175 −0.2288∗∗∗

(0.0193) (0.0346)

Friends of friends (strong-weak) 0.0226∗∗∗ 0.0696∗∗∗

(0.0044) (0.0087)

Friends of friends (weak-strong) −0.0460∗∗∗ −0.1103∗∗∗

(0.0135) (0.0166)

Friends of friends (weak-weak) 0.0016 0.0224∗∗∗

(0.0039) (0.0054)

Observations 10,089,959 10,089,959 10,089,959 10,089,959 10,089,959 10,089,959

R2 0.1909 0.1909 0.1909 0.1909 0.1909 0.1909

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an individual i migrated from home district h to
destination district d in month t. We show the destination “friend of friend” coefficient separately for geometries of different tie strength.
“Strong-strong” (column 2) indicates the effect of friends of friends when the potential migrant i is connected to j via a strong tie, and j is
connected to k via a strong tie. “Strong-weak” (column 3) indicates the effect when i and j have a strong tie and j and k have a weak tie.
Columns 4 and 5 follow this nomenclature. Strong ties are defined as relationships with 5 or more phone calls (the 90th percentile of tie
strength) in a given month. Coefficients and standard errors are multiplied by 1000 to make the tables more readable. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01
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Table A10: Disaggregating the network support effect by the strength of supported ties

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Support (all) 1.3211∗∗∗

(0.1415)

Support (sss) 1.6200∗ 2.5375∗∗∗

(0.9108) (0.9246)

Support (sws) 6.9022∗∗∗ 7.6857∗∗∗

(1.0226) (1.0363)

Support (ssw) 0.6118∗∗∗ −0.0068

(0.1894) (0.2202)

Support (sww) 2.7148∗∗∗ 3.0284∗∗∗

(0.1753) (0.1932)

Support (wss) −0.5028∗∗ −0.5472∗

(0.2407) (0.3257)

Support (wws) 0.9461∗∗∗ −2.5847∗∗∗

(0.2694) (0.3317)

Support (wsw) −1.9032∗∗∗ −1.9038∗∗∗

(0.3480) (0.3543)

Support (www) 1.5830∗∗∗ 1.2720∗∗∗

(0.3260) (0.3292)

Strong tie 1.3544∗∗∗ 1.3941∗∗∗ 1.3132∗∗∗ 1.3981∗∗∗ 1.3135∗∗∗ 1.4268∗∗∗ 1.3923∗∗∗ 1.4085∗∗∗ 1.4242∗∗∗ 1.2280∗∗∗

(0.0834) (0.0838) (0.0836) (0.0835) (0.0830) (0.0839) (0.0841) (0.0825) (0.0825) (0.0886)

Observations 10,089,959 10,089,959 10,089,959 10,089,959 10,089,959 10,089,959 10,089,959 10,089,959 10,089,959 10,089,959

R2 0.1910 0.1910 0.1910 0.1910 0.1910 0.1910 0.1910 0.1910 0.1910 0.1911

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an individual i migrated from home district h to
destination district d in month t. We show the Destination network “support” coefficient separately for geometries of different tie strengths.
“SSS’ (column 2) indicates the effect of network support for triangles where the potential migrant i is connected to j via a strong tie, j is
connected to k via a strong tie, and k and i are connected by a strong tie. “SWS” (column 3) indicates the effect when i and j have a strong
tie, j and k have a weak tie, and k and i have a strong tie. Columns 4-8 follow a similar nomenclature. Strong ties are defined as relationships
with 5 or more phone calls (the 90th percentile of tie strength) in a given month. Coefficients and standard errors are multiplied by 1000 to
make the tables more readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

98



Table A11: Beyond location-specific subnetworks

(1) (2) (3) (4)

Panel A: Migrant connected to friend of friend in destination via friend in destination:

% friends with common support 0.7882∗∗∗ 2.0793∗∗∗

(0.1381) (0.2463)

Unique friends of friends −0.0016 0.0048

(0.0035) (0.0035)

Panel B: Migrant connected to friend of friend in destination via friend at home:

% friends with common support −2.7718∗∗∗ −4.9650∗∗∗

(0.2350) (0.3624)

Unique friends of friends −0.0629∗∗∗ −0.0618∗∗∗

(0.0032) (0.0033)

Panel C: Migrant connected to friend of friend in destination via friend in other district:

% friends with common support 1.4941∗∗∗ 1.5658∗∗∗

(0.2321) (0.2764)

Unique friends of friends −0.0142∗∗∗ 0.0006

(0.0039) (0.0040)

Observations 9,889,981 9,889,981 9,889,981 9,889,981

R2 0.1872 0.1876 0.1872 0.1877

Destination degree fixed effects Yes Yes Yes Yes

Home degree fixed effects Yes Yes Yes Yes

Degree in other districts fixed effects Yes Yes Yes Yes

Home*Destination*Month fixed effects Yes Yes Yes Yes

Individual fixed effects Yes Yes Yes Yes

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an individual i migrated
from home district h to destination district d in month t. Panels vary the location of the intermediate connection
j between the migrant i and the friend-of-friend k in the destination. Column (1) reproduces column 4 of Table 2,
Panel A. Column 2 calculates ‘friends of friends’ and ‘friends with support’ when j is at home. Column 3 uses
contacts j in any district aside from h and d. Column 4 shows the joint regression with all six regressors.
Standard errors are two-way clustered by individual and by home-destination-month. Coefficients and standard
errors are multiplied by 1000 to make tables more readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A12: Migration and social network structure (6 month network lag)

(1) (2) (3) (4)

Panel A: Destination network characteristics

Degree (network size) 3.0636∗∗∗

(0.0674)

% Friends with common support 1.9747∗∗∗ 1.9760∗∗∗

(0.1608) (0.1605)

Unique friends of friends −0.0010 −0.0011

(0.0045) (0.0045)

Observations 6,904,137 6,904,137 6,904,137 6,904,137

R2 0.1791 0.1793 0.1793 0.1793

Panel B: Home network characteristics

Degree (network size) −0.2615∗∗∗

(0.0167)

% Friends with common support −1.4756∗∗∗ −1.5383∗∗∗

(0.3915) (0.3872)

Unique friends of friends −0.0052∗∗∗ −0.0053∗∗∗

(0.0018) (0.0018)

Observations 6,904,137 6,904,137 6,904,137 6,904,137

R2 0.1703 0.1709 0.1709 0.1709

Degree fixed effects No Yes Yes Yes

Individual fixed effects Yes Yes Yes Yes

Home*Destination*Month F.E. Yes Yes Yes Yes

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an
individual i migrated from home district h to destination district d in month t. Social network
characteristics calculated in month t− 6. Standard errors are two-way clustered by individual
and by home-destination-month. Coefficients and standard errors are multiplied by 1000 to
make the tables more readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A13: Jointly estimated effects (6 month network lag)

(1) (2) (3)

Destination Degree (network size) 4.6645∗∗∗ 3.1825∗∗∗

(0.1447) (0.1039)

Destination % friends with support 4.5280∗∗∗ 2.3678∗∗∗ 1.7605∗∗∗

(0.2171) (0.1627) (0.1608)

Destination friends of friends −0.0446∗∗∗ −0.0088∗∗∗ −0.0021∗

(0.0066) (0.0049) (0.0045)

Home Degree (network size) −0.6265∗∗∗ −0.3528∗∗∗

(0.0208) (0.0330)

Home % friends with support 3.5578∗∗∗ −4.6670∗∗∗ −0.7724∗∗∗

(0.4182) (0.3913) (0.3846)

Home friends of friends 0.0098∗∗∗ 0.0085∗∗∗ 0.0025∗∗∗

(0.0007) (0.0017) (0.0018)

Observations 6,904,137 6,904,137 6,904,137

R2 0.0204 0.1794 0.1800

Degree fixed effects No No Yes

Home*Destination*Month fixed effects No Yes Yes

Individual fixed effects No Yes Yes

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an in-
dividual i migrated from home district h to destination district d in month t. Social network
characteristics calculated in month t − 6. Standard errors are two-way clustered by individual
and by home-destination-month. Coefficients and standard errors are multiplied by 1000 to make
the tables more readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A14: “Shift share” regression results

(1) (2) (3) (4)

Destination network characteristics

Change in % friends with common support 5.9480∗∗∗ 5.2585∗∗∗ 0.3002 0.2575

(0.1673) (0.1866) (0.6268) (1.1672)

Change in friends of friends −0.0190∗∗∗ 0.0008 −0.0151 0.0017

(0.0189) (0.0136) (0.0203) (0.0274)

Observations 6,483,525 3,961,415 917,557 283,171

R2 0.1930 0.2082 0.3938 0.4798

Partial R2 (from network changes) 0.0011 0.0011 0.0001 0.0001

“Early period” t0 6 months 12 months 6 months 12 months

“Late period” t1 2 months 2 months 2 months 2 months

Contacts considered t0 contacts t0 contacts t0 ∩ t1 contacts t0 ∩ t1

Degree fixed effects Yes Yes Yes Yes

Home*Destination*Month fixed effects Yes Yes Yes Yes

Individual fixed effects Yes Yes Yes Yes

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an individual i
migrated from home district h to destination district d in month t. Social network characteristics calculated
based on changes in higher-order network structure between an early period t0 and a later period t1. Columns
1 and 2 isolate changes in higher order structure based on the direct contacts of i in t0. Columns 3 and 4
isolate changes in higher order structure based on the set of contacts who are connected to i in both t0 and
t1. Standard errors are two-way clustered by individual and by home-destination-month. Coefficients and
standard errors are multiplied by 1000 to make the tables more readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A15: Do changes in network structure predict migration?

(1) (2) (3) (4)

Panel A: Change of destination network characteristics

Degree (network size) −0.5726∗∗∗ −1.1853∗∗∗

(0.1888) (0.3587)

% Friends with common support −0.7758 1.8061∗∗∗

(0.7497) (0.1482)

Unique friends of friends −0.0149∗∗∗ 0.0255∗∗∗

(0.0056) (0.0095)

R2 0.0004 0.0000 0.0002 0.0005

Panel B: Change of home network characteristics

Degree (network size) −0.0255∗∗∗ −0.0006

(0.0018) (0.0040)

% Friends with common support −0.2884∗∗∗ −0.0166

(0.0373) (0.0302)

Unique friends of friends −0.0009∗∗∗ −0.0009∗∗∗

(0.0001) (0.0002)

R2 0.0001 0.00000 0.0001 0.0001

Degree fixed effects No No No No

Individual fixed effects No No No No

Home*Destination*Month F.E. No No No No

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an
individual i migrated from home district h to destination district d in month t. Independent
variables are changes in network properties measured between t-6 and t-2. No fixed effects
are used in this specification. Coefficients and standard errors are multiplied by 1000 to make
the tables more readable. Standard errors are two-way clustered by individual and by home-
destination-month. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A16: Robustness to alternative fixed effect specifications

(1) (2) (3) (4) (5)

Destination friends of friends −0.0002 0.0011 −0.0064∗∗ −0.0077∗∗∗ −0.0028

(0.0035) (0.0040) (0.0030) (0.0025) (0.0044)

% Destination friends with support 1.4808∗∗∗ 1.3719∗∗∗ 0.3458∗∗∗ 0.6663∗∗∗ 0.1123

(0.1435) (0.2125) (0.1339) (0.1241) (0.1365)

Observations 9,889,981 9,889,981 9,889,981 9,889,981 9,889,981

R2 0.1853 0.5081 0.5952 0.6681 0.6333

Fixed effects D, h ∗ d ∗ t, i D, h ∗ d ∗ t, i ∗ t D, h ∗ d ∗ t, i ∗ d D, h ∗ d ∗ t, i ∗D D, h ∗ d ∗ i, t

Notes: Each column indicates a separate regression of a binary variable indicating 1 if an individual i migrated from home district h to destination
district d in month t. All specifications control non-parametrically for the number of unique contacts D that i has in district d. Standard errors are
two-way clustered by individual and by home-destination-month. Coefficients and standard errors are multiplied by 1000 to make the tables more
readable. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.104



Table A17: Predicted migration (from structural model) and social network structure

(1) (2) (3) (4)

Panel A: Destination network characteristics

Degree (network size) 68.0931∗∗∗

(0.0450)

% Friends with common support 172.8557∗∗∗ 170.7765∗∗∗

(0.4015) (0.4002)

Unique friends of friends −0.7402∗∗∗ −0.7033∗∗∗

(0.0035) (0.0034)

Observations 6,386,523 6,386,523 6,386,523 6,386,523

R2 0.5968 0.6359 0.6272 0.6386

Panel B: Home network characteristics

Degree (network size) −11.4922∗∗∗

(0.0197)

% Friends with common support −183.6519∗∗∗ −184.6382∗∗∗

(1.0150) (1.0159)

Unique friends of friends −0.0240∗∗∗ −0.0364∗∗∗

(0.0016) (0.0016)

Observations 6,386,523 6,386,523 6,386,523 6,386,523

R2 0.4676 0.4948 0.4920 0.4949

Degree fixed effects No Yes Yes Yes

Individual fixed effects Yes Yes Yes Yes

Home*Destination*Month F.E. Yes Yes Yes Yes

Notes: Each column indicates a separate regression of a binary variable M̂ihdt that takes the value
1 if an individual i was predicted to migrate from home district h to destination district d in month
t (where this prediction is based on the calibrated structural model, and determined using the
actual network properties of i). Standard errors are two-way clustered by individual. Coefficients
and standard errors are multiplied by 1000 to make the tables more readable. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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